Do you want to publish a course? Click here

Casimir force between a sphere and a plane: spectral representation formalism

162   0   0.0 ( 0 )
 Added by Cecilia Noguez
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We develop a spectral representation formalism to calculate the Casimir force in the non-retarded limit, between a spherical particle and a substrate, both with arbitrary local dielectric properties. This spectral formalism allows one to do a systematic study of the force as a function of the geometrical variables separately from the dielectric properties. We found that the force does not follow a simple power-law as a function of the separation between the sphere and substrate. As a consequence, the non-retarded Casimir force is enhanced by several orders of magnitude as the sphere approaches the substrate, while at large separations the dipolar term dominates the force.



rate research

Read More

We report on measurements of forces acting between two conducting surfaces in a spherical-plane configuration in the 35 nm-1 micrometer separation range. The measurements are obtained by performing electrostatic calibrations followed by a residual analysis after subtracting the electrostatic-dependent component. We find in all runs optimal fitting of the calibrations for exponents smaller than the one predicted by electrostatics for an ideal sphere-plane geometry. We also find that the external bias potential necessary to minimize the electrostatic contribution depends on the sphere-plane distance. In spite of these anomalies, by implementing a parametrixation-dependent subtraction of the electrostatic contribution we have found evidence for short-distance attractive forces of magnitude comparable to the expected Casimir-Lifshitz force. We finally discuss the relevance of our findings in the more general context of Casimir-Lifshitz force measurements, with particular regard to the critical issues of the electrical and geometrical characterization of the involved surfaces.
We have performed precision electrostatic calibrations in the sphere-plane geometry and observed anomalous behavior. Namely, the scaling exponent of the electrostatic signal with distance was found to be smaller than expected on the basis of the pure Coulombian contribution and the residual potential found to be distance dependent. We argue that these findings affect the accuracy of the electrostatic calibrations and invite reanalysis of previous determinations of the Casimir force.
We calculate the Casimir force between two parallel ideal metal plates when there is an intervening chiral medium present. Making use of methods of quantum statistical mechanics we show how the force can be found in a simple and compact way. The expression for the force is in agreement with that obtained recently by Q.-D. Jiang and F. Wilczek [Phys. Rev. B {bf 99}, 125403 (2019)], in their case with the use of Green function methods.
In a recent Comment, Decca et al. [Phys. Rev. A 79, 026101 (2009); arXiv:0809.3576] discussed the origin of the anomalies recently reported by us in Phys. Rev. A 78, 036102(R) (2008); arXiv:0812.0028 . Here we restate our view, corroborated by their considerations, that quantitative geometrical and electrostatic characterizations of the conducting surfaces (a topic not discussed explicitly in the literature until very recently) are critical for the assessment of precision and accuracy of the demonstration of the Casimir force and for deriving meaningful limits on the existence of Yukawian components possibly superimposed to the Newtonian gravitational interaction.
104 - Yael Avni , Ulf Leonhardt 2017
The dielectric sphere has been an important test case for understanding and calculating the vacuum force of a dielectric body onto itself. Here we develop a method for computing this force in homogeneous spheres of arbitrary dielectric properties embedded in arbitrary homogeneous backgrounds, assuming only that both materials are isotropic and dispersionless. Our results agree with known special cases; most notably we reproduce the prediction of Boyer and Schwinger et al. of a repulsive Casimir force of a perfectly reflecting shell. Our results disagree with the literature in the dilute limit. We argue that Casimir forces can not be regarded as due to pair-wise Casimir-Polder interactions, but rather due to reflections of virtual electromagnetic waves.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا