No Arabic abstract
We predict theoretically and demonstrate experimentally an ellipticity-dependent nonlinear magneto-optic rotation of elliptically-polarized light propagating in a coherent atomic medium. We show that this effect results from a hexadecapole and higher order momenta of atomic coherence, and is associated with an enhancement of Kerr and higher orders nonlinearities accompanied by suppression of the other linear and nonlinear susceptibility terms of the medium. These nonlinearities might be useful for quantum signal processing. In particular, we report an observation of an enhancement the polarization rotation of elliptically polarized light resonant with the 5S_{1/2} F=2 -> 5P_{1/2} F=1 transition of Rb87.
We report on an all-optical magnetometric technique based on nonlinear magneto-optical rotation with amplitude-modulated light. The method enables sensitive magnetic-field measurements in a broad dynamic range. We demonstrate the sensitivity of $4.3times10^{-9}$ G/$sqrt{text{Hz}}$ at 10 mG and the magnetic field tracking in a range of 40 mG. The fundamental limits of the method sensitivity and factors determining current performance of the magnetometer are discussed.
The role of Coulomb focusing in above-threshold ionization in an elliptically polarized mid-infrared strong laser field is investigated within a semiclassical model incorporating tunneling and Coulomb field effects. It is shown that Coulomb focusing up to moderate ellipticity values is dominated by multiple forward scattering of the ionized electron by the atomic core that creates a characteristic low-energy structure in the photoelectron spectrum and is responsible for the peculiar energy scaling of the ionization normalized yield along the major polarization axis. At higher ellipticities, the electron continuum dynamics is disturbed by the Coulomb field effect mostly at the exit of the ionization tunnel. Due to the latter, the normalized yield is found to be enhanced, with the enhancement factor being sharply pronounced at intermediate ellipticities.
We have studied the intensity correlations between two orthogonally linearly polarized components of a laser field propagating through a resonant atomic medium. These experiments have been performed in a Rubidium atomic vapor. We observe that the correlations between the orthogonally polarized components of the laser beam are maximal in the absence of a magnetic field. The magnitude of the correlations depends on the applied magnetic field, and the magnitude first decreases and then increases with increasing magnetic field. Minimal correlations and maximal rotation angles are observed at the same magnetic fields. The width of the correlation function is directly proportional to the excited state lifetime and inversely proportional to the Rabi frequency of laser field. These results can be useful for improving optical magnetometers and for optical field or atomic spin squeezing.
We present experimental and numerical studies of nonlinear magneto-optical rotation (NMOR) in rubidium vapor excited with resonant light tuned to the $5^2!S_{1/2}rightarrow 6^2!P_{1/2}$ absorption line (421~nm). Contrary to the experiments performed to date on the strong $D_1$ or $D_2$ lines, in this case, the spontaneous decay of the excited state $6^2!P_{1/2}$ may occur via multiple intermediate states, affecting the dynamics, magnitude and other characteristics of NMOR. Comparing the experimental results with the results of modelling based on Auzinsh et al., Phys. Rev. A 80, 1 (2009), we demonstrate that despite the complexity of the structure, NMOR can be adequately described with a model, where only a single excited-state relaxation rate is used.
Abstract The magneto-optical trap (MOT) is an essential tool for collecting and preparing cold atoms with a wide range of applications. We demonstrate a planar-integrated MOT by combining an optical grating chip with a magnetic coil chip. The flat grating chip simplifies the conventional six-beam configuration down to a single laser beam; the flat coil chip replaces the conventional anti-Helmholtz coils of a cylindrical geometry. We trap 10^{4} cold ^{87}text{Rb} atoms in the planar-integrated MOT, at a point 3-9 mm above the chip surface. This novel configuration effectively reduces the volume, weight, and complexity of the MOT, bringing benefits to applications including gravimeter, clock and quantum memory devices.