Do you want to publish a course? Click here

String Theory in Electromagnetic Fields

290   0   0.0 ( 0 )
 Added by Richard Szabo
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

A review of various aspects of superstrings in background electromagnetic fields is presented. Topics covered include the Born-Infeld action, spectrum of open strings in background gauge fields, the Schwinger mechanism, finite-temperature formalism and Hagedorn behaviour in external fields, Debye screening, D-brane scattering, thermodynamics of D-branes, and noncommutative field and string theories on D-branes. The electric field instabilities are emphasized throughout and contrasted with the case of magnetic fields. A new derivation of the velocity-dependent potential between moving D-branes is presented, as is a new result for the velocity corrections to the one-loop thermal effective potential.



rate research

Read More

In this paper, we analyze the inflationary cosmology using string field theory. This is done by using the zero level contribution from string field theory, which is a non-local tachyonic action. We will use the non-local Friedmann equations for this model based on string field theory, and calculate the slow-roll parameters for this model. We will then explicitly obtain the scalar and tensorial power spectrum, their related indices, and the tensor-to-scalar ratio for this model. Finally, we use cosmological data from Planck 2013 to 2018 to constrain the free parameters in this model and find that string field theory is compatible with them.
We present a new supersymmetric, asymptotically flat, black hole solution to five-dimensional U(1)^3-supergravity which is regular on and outside an event horizon of lens space topology L(2,1). The solution has seven independent parameters and uplifts to a family of 1/8-supersymmetric D1-D5-P black brane solutions to Type IIB supergravity. The decoupling limit is asymptotically AdS(3) x S^3 x T^4, with a near-horizon geometry that is a twisted product of the near-horizon geometry of the extremal BTZ black hole and L(2,1) x T^4, although it is not (locally) a product space in the bulk. We show that the decoupling limit of a special case of the black lens is related to that of a black ring by spectral flow, thereby supplying an account of its entropy. Analogous solutions of U(1)^N-supergravity are also presented.
We argue that the holographic description of four-dimensional BPS black holes naturally includes multi-center solutions. This suggests that the holographic dual to the gauge theory is not a single AdS_2 times S^2 but a coherent ensemble of them. We verify this in a particular class of examples, where the two-dimensional Yang-Mills theory gives a holographic description of the black holes obtained by branes wrapping Calabi-Yau cycles. Using the free fermionic formulation, we show that O(e^{-N}) non-perturbative effects entangle the two Fermi surfaces. In an Euclidean description, the wave-function of the multi-center black holes gets mapped to the Hartle-Hawking wave-function of baby universes. This provides a concrete realization, within string theory, of effects that can be interpreted as the creation of baby universes. We find that, at least in the case we study, the baby universes do not lead to a loss of quantum coherence, in accord with general arguments.
130 - E.Dudas 2010
In string models with brane supersymmetry breaking exponential potentials emerge at (closed-string) tree level but are not accompanied by tachyons. Potentials of this type have long been a source of embarrassment in flat space, but can have interesting implications for Cosmology. For instance, in ten dimensions the logarithmic slope |V/V| lies precisely at a critical value where the Lucchin--Matarrese attractor disappears while the scalar field is emph{forced} to climb up the potential when it emerges from the Big Bang. This type of behavior is in principle perturbative in the string coupling, persists after compactification, could have trapped scalar fields inside potential wells as a result of the cosmological evolution and could have also injected the inflationary phase of our Universe.
69 - Shaun Hampton 2019
The strongly coupled dynamics of black hole formation in bulk AdS is conjectured to be dual to the thermalization of a weakly interacting CFT on the boundary for low $N$ which, for $Ntoinfty$, becomes strongly coupled. We search for this thermalization effect by utilizing the D1D5 CFT to compute effective string interactions for $N=2$. This is done by turning on a marginal deformation of the theory which twists together or untwists effective strings. For a system to thermalize, the initial state, which is far from thermal, must redistribute its energy via interactions until a thermal state is achieved. In our case, we consider excited states of the effective strings. We compute splitting amplitudes for 1) one excitation going to three excitations and 2) two excitations going to four excitations using two insertions of the deformation. Scenario 1) corresponds to a single particle moving in AdS. Scenario 2) corresponds to two particles moving and colliding in AdS. We find that the `1 to 3 amplitude has terms which oscillate with time, $t$, where $t$ is the duration of the two deformations. We find that the `2 to 4 amplitude has similar oscillatory terms as well as secular terms which grow like $t^2$. For this case the growth implies that for large $t$ the excitations in the initial state, which carry a given energy, prefer to redistribute themselves amongst lower energy modes in the final state. This is a key feature of thermalization. Albeit in a simplified setting, we therefore argue that we have identified the thermalization vertex in the D1D5 CFT, which after repeated applications, should lead to thermalization. This ultimately maps to two particles colliding and forming a black hole in AdS, which in our case, is a fuzzball.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا