No Arabic abstract
The strongly coupled dynamics of black hole formation in bulk AdS is conjectured to be dual to the thermalization of a weakly interacting CFT on the boundary for low $N$ which, for $Ntoinfty$, becomes strongly coupled. We search for this thermalization effect by utilizing the D1D5 CFT to compute effective string interactions for $N=2$. This is done by turning on a marginal deformation of the theory which twists together or untwists effective strings. For a system to thermalize, the initial state, which is far from thermal, must redistribute its energy via interactions until a thermal state is achieved. In our case, we consider excited states of the effective strings. We compute splitting amplitudes for 1) one excitation going to three excitations and 2) two excitations going to four excitations using two insertions of the deformation. Scenario 1) corresponds to a single particle moving in AdS. Scenario 2) corresponds to two particles moving and colliding in AdS. We find that the `1 to 3 amplitude has terms which oscillate with time, $t$, where $t$ is the duration of the two deformations. We find that the `2 to 4 amplitude has similar oscillatory terms as well as secular terms which grow like $t^2$. For this case the growth implies that for large $t$ the excitations in the initial state, which carry a given energy, prefer to redistribute themselves amongst lower energy modes in the final state. This is a key feature of thermalization. Albeit in a simplified setting, we therefore argue that we have identified the thermalization vertex in the D1D5 CFT, which after repeated applications, should lead to thermalization. This ultimately maps to two particles colliding and forming a black hole in AdS, which in our case, is a fuzzball.
We present a new supersymmetric, asymptotically flat, black hole solution to five-dimensional U(1)^3-supergravity which is regular on and outside an event horizon of lens space topology L(2,1). The solution has seven independent parameters and uplifts to a family of 1/8-supersymmetric D1-D5-P black brane solutions to Type IIB supergravity. The decoupling limit is asymptotically AdS(3) x S^3 x T^4, with a near-horizon geometry that is a twisted product of the near-horizon geometry of the extremal BTZ black hole and L(2,1) x T^4, although it is not (locally) a product space in the bulk. We show that the decoupling limit of a special case of the black lens is related to that of a black ring by spectral flow, thereby supplying an account of its entropy. Analogous solutions of U(1)^N-supergravity are also presented.
We explore the (non)-universality of Martinezs conjecture, originally proposed for Kerr black holes, within and beyond general relativity. The conjecture states that the Brown-York quasilocal energy at the outer horizon of such a black hole reduces to twice its irreducible mass, or equivalently, to sqrt{A} /(2sqrt{pi}), where `A is its area. We first consider the charged Kerr black hole. For such a spacetime, we calculate the quasilocal energy within a two-surface of constant Boyer-Lindquist radius embedded in a constant stationary-time slice. Keeping with Martinezs conjecture, at the outer horizon this energy equals the irreducible mass. The energy is positive and monotonically decreases to the ADM mass as the boundary-surface radius diverges. Next we perform an analogous calculation for the quasilocal energy for the Kerr-Sen spacetime, which corresponds to four-dimensional rotating charged black hole solutions in heterotic string theory. The behavior of this energy as a function of the boundary-surface radius is similar to the charged Kerr case. However, we show that in this case it does not approach the expression conjectured by Martinez at the horizon.
We present novel analytic hairy black holes with a flat base manifold in the (3+1)-dimensional Einstein SU(2)-Skyrme system with negative cosmological constant. We also construct (3+1)-dimensional black strings in the Einstein $SU(2)$-non linear sigma model theory with negative cosmological constant. The geometry of these black strings is a three-dimensional charged BTZ black hole times a line, without any warp factor. The thermodynamics of these configurations (and its dependence on the discrete hairy parameter) is analyzed in details. A very rich phase diagram emerges.
To find the origin of chaos near black hole horizon in string-theoretic AdS/CFT correspondence, we perform a chaos analysis of a suspended string in AdS black hole backgrounds. It has a definite CFT interpretation: chaos of Wilson loops, or in other words, sensitive time-evolution of a quark antiquark force in thermal gauge theories. Our nonlinear numerical simulation of the suspended Nambu-Goto string shows chaos, which would be absent in pure AdS background. The calculated Lyapunov exponent $lambda$ satisfies the universal bound $lambda leq 2pi T_{rm H}$ for the Hawking temperature $T_{rm H}$. We also analyze a toy model of a rectangular string probing the horizon and show that it contains a universal saddle characterized by the surface gravity $2pi T_{rm H}$. Our work demonstrates that the black hole horizon is the origin of the chaos, and suggests a close interplay between chaos and quark deconfinement.
In this paper, we analyze the inflationary cosmology using string field theory. This is done by using the zero level contribution from string field theory, which is a non-local tachyonic action. We will use the non-local Friedmann equations for this model based on string field theory, and calculate the slow-roll parameters for this model. We will then explicitly obtain the scalar and tensorial power spectrum, their related indices, and the tensor-to-scalar ratio for this model. Finally, we use cosmological data from Planck 2013 to 2018 to constrain the free parameters in this model and find that string field theory is compatible with them.