Do you want to publish a course? Click here

Axial form factor in the chiral quark soliton model

283   0   0.0 ( 0 )
 Added by Christo Christov
 Publication date 1995
  fields
and research's language is English




Ask ChatGPT about the research

We calculate the axial form factor in the chiral quark soliton (semibosonized Nambu - Jona-Lasinio) model using the semiclassical quantization scheme in the next to leading order in angular velocity. The obtained axial form factor is in a good absolute (without additional scaling) agreement with the experimental data. Both the value at the origin and the $q$-dependence of the form factor as well as the axial m.s.radius are fairly well reproduced.



rate research

Read More

In this paper we present the derivation as well as the numerical results for the electromagnetic form factors of the nucleon within the chiral quark soliton model in the semiclassical quantization scheme. The model is based on semibosonized SU(2) Nambu -- Jona-Lasinio lagrangean, where the boson fields are treated as classical ones. Other observables, namely the nucleon mean squared radii, the magnetic moments, and the nucleon--$Delta$ splitting are calculated as well. The calculations have been done taking into account the quark sea polarization effects. The final results, including rotational $1/N_c$ corrections, are compared with the existing experimental data, and they are found to be in a good agreement for the constituent quark mass of about 420 MeV. The only exception is the neutron electric form factor which is overestimated.
90 - K.Goeke , J.Grabis , J.Ossmann 2007
The nucleon form factors of the energy-momentum tensor are studied in the large-Nc limit in the framework of the chiral quark-soliton model.
92 - T. Gehrmann , A. Primo 2021
We compute the three-loop corrections to the quark axial vector form factor in massless QCD, focusing on the pure-singlet contributions where the axial vector current couples to a closed quark loop. Employing the Larin prescription for $gamma_5$, we discuss the UV renormalization of the form factor. The infrared singularity structure of the resulting singlet axial-vector form factor is explained from infrared factorization, defining a finite remainder function.
We study the pion Distribution Amplitude (pi DA) in the context of a nonlocal chiral quark model. The corresponding Lagrangian reproduces the phenomenological values of the pion mass and decay constant, as well as the momentum dependence of the quark propagator obtained in lattice calculations. It is found that the obtained pi DA has two symmetric maxima, which arise from the new contributions generated by the nonlocal character of the interactions. This pi DA is applied to leading order and next-to-leading order calculations of the pion-photon transition form factor. Implications of the results are discussed.
114 - Andreas Juttner 2012
Expressions for the Wick contractions contributing to the scalar pion form-factor were computed model-independently in chiral perturbation theory at next-to-leading order. The results reveal correlations amongst the different contractions in terms of low-energy constants and allow for extrapolating lattice data for individual Wick contractions. The quark disconnected contribution to the real part of the form factor turns out to be suppressed with respect to the quark connected one. The corresponding contribution to the scalar radius has the same size as the connected contribution and can therefore not be neglected.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا