Expressions for the Wick contractions contributing to the scalar pion form-factor were computed model-independently in chiral perturbation theory at next-to-leading order. The results reveal correlations amongst the different contractions in terms of low-energy constants and allow for extrapolating lattice data for individual Wick contractions. The quark disconnected contribution to the real part of the form factor turns out to be suppressed with respect to the quark connected one. The corresponding contribution to the scalar radius has the same size as the connected contribution and can therefore not be neglected.
The quark-connected and the quark-disconnected Wick contractions contributing to the pions scalar form factor are computed in the two and in the three flavour chiral effective theory at next-to-leading order. While the quark-disconnected contribution to the form factor itself turns out to be power-counting suppressed its contribution to the scalar radius is of the same order of magnitude as the one of the quark-connected contribution. This result underlines that neglecting quark-disconnected contributions in simulations of lattice QCD can cause significant systematic effects. The technique used to derive these predictions can be applied to a large class of observables relevant for QCD-phenomenology.
We present a comprehensive study of the electromagnetic form factor, the decay constant and the mass of the pion computed in lattice QCD with two degenerate O(a)-improved Wilson quarks at three different lattice spacings in the range 0.05-0.08fm and pion masses between 280 and 630MeV at m_pi L >~ 4. Using partially twisted boundary conditions and stochastic estimators, we obtain a dense set of precise data points for the form factor at very small momentum transfers, allowing for a model-independent extraction of the charge radius. Chiral Perturbation Theory (ChPT) augmented by terms which model lattice artefacts is then compared to the data. At next-to-leading order the effective theory fails to produce a consistent description of the full set of pion observables but describes the data well when only the decay constant and mass are considered. By contrast, using the next-to-next-to-leading order expressions to perform global fits result in a consistent description of all data. We obtain <r^2_pi>=0.481(33)(13)fm^2 as our final result for the charge radius at the physical point. Our calculation also yields estimates for the pion decay constant in the chiral limit, F_pi/F=1.080(16)(6), the quark condensate, Sigma^{1/3}_MSbar(2GeV)=261(13)(1)MeV and several low-energy constants of SU(2) ChPT.
We calculate the axial form factor in the chiral quark soliton (semibosonized Nambu - Jona-Lasinio) model using the semiclassical quantization scheme in the next to leading order in angular velocity. The obtained axial form factor is in a good absolute (without additional scaling) agreement with the experimental data. Both the value at the origin and the $q$-dependence of the form factor as well as the axial m.s.radius are fairly well reproduced.
A comparison of the linear sigma model (L$sigma$M) and Chiral Perturbation Theory (ChPT) predictions for pion and kaon dynamics is presented. Lowest and next-to-leading order terms in the ChPT amplitudes are reproduced if one restricts to scalar resonance exchange. Some low energy constants of the order $p^4$ ChPT Lagrangian are fixed in terms of scalar meson masses. Present values of these low energy constants are compatible with the L$sigma$M dynamics. We conclude that more accurate values would be most useful either to falsify the L$sigma$M or to show its capability to shed some light on the controversial scalar physics.
We consider 2+1 flavor Wilson Chiral Perturbation Theory including the lattice spacing contributions of O($a^{2}$). We adopt a power counting appropriate for the unquenched lattice simulations carried out by the CP-PACS/JLQCD collaboration and compute the pseudo scalar meson masses to one loop. These expression are required to perform the chiral extrapolation of the CP-PACS/JLQCD lattice data.