Do you want to publish a course? Click here

Unconventional pairing in bipolaronic theories

310   0   0.0 ( 0 )
 Added by Jim Hague
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

Various mechanisms have been put forward for cuprate superconductivity, which fit largely into two camps: spin-fluctuation and electron-phonon (el-ph) mechanisms. However, in spite of a large effort, electron-phonon interactions are not fully understood away from clearly defined limits. To this end, we use a numerically exact algorithm to simulate the binding of bipolarons. We present the results of a continuous-time quantum Monte-Carlo (CTQMC) algorithm on a tight-binding lattice, for bipolarons with arbitrary interaction range in the presence of strong coulomb repulsion. The algorithm is sufficiently efficient that we can discuss properties of bipolarons with various pairing symmetries. We investigate the effective mass and binding energies of singlet and triplet real-space bipolarons for the first time, and discuss the extensions necessary to investigate $d$-symmetric pairs.



rate research

Read More

We use magnetic long range order as a tool to probe the Cooper pair wave function in the iron arsenide superconductors. We show theoretically that antiferromagnetism and superconductivity can coexist in these materials only if Cooper pairs form an unconventional, sign-changing state. The observation of coexistence in Ba(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ then demonstrates unconventional pairing in this material. The detailed agreement between theory and neutron diffraction experiments, in particular for the unusual behavior of the magnetic order below $T_{c}$, demonstrates the robustness of our conclusions. Our findings strongly suggest that superconductivity is unconventional in all members of the iron arsenide family.
The recent discovery of AV$_3$Sb$_5$ (A=K,Rb,Cs) has uncovered an intriguing arena for exotic Fermi surface instabilities in a kagome metal. Among them, superconductivity is found in the vicinity of multiple van Hove singularities, exhibiting indications of unconventional pairing. We show that the sublattice interference mechanism is central to understanding the formation of superconductivity in a kagome metal. Starting from an appropriately chosen minimal tight-binding model with multiple with multiple van Hove singularities close to the Fermi level for AV$_3$Sb$_5$, we provide a random phase approximation analysis of superconducting instabilities. Non-local Coulomb repulsion, the sublattice profile of the van Hove bands, and the bare interaction strength turn out to be the crucial parameters to determine the preferred pairing symmetry. Implications for potentially topological surface states are discussed, along with a proposal for additional measurements to pin down the nature of superconductivity in AV$_3$Sb$_5$.
To shed light on the symmetry of the superconducting order parameter in Na_xCoO_2-yH_2O, the Mn doping effects are studied. X-ray absorption spectroscopy verifies that the doped Mn impurities occupy the Co sites and are with a valance close to +4. Impurity scattering by Mn is in the unitary limit that, however, does not lead to strong Tc suppression. This absence of the strong impurity effects on T_c is not consistent with the simple picture of a sign-changing order parameter. Coexistence of the s-wave and unconventional order parameters is proposed to reconcile all existing experiments and has been directly observed by the specific heat experiments.
The pairing mechanism in iron-based superconductors is believed to be unconventional, i.e. not phonon-mediated. The achieved transition temperatures Tc in these superconductors are still significantly below those of some of the cuprates, with the exception of single layer FeSe films on SrTiO3 showing a Tc between 60 and 100 K, i.e. an order of magnitude larger than in bulk FeSe. This enormous increase of Tc demonstrates the potential of interface engineering for superconductivity, yet the underlying mechanism of Cooper pairing is not understood. Both conventional and unconventional mechanisms have been discussed. Here we report a direct measurement of the electron-boson coupling function in FeSe on SrTiO3 using inelastic electron scattering which shows that the excitation spectrum becomes fully gapped below Tc strongly supporting a predominantly electronic pairing mechanism. We also find evidence for strong electron-phonon coupling of low energy electrons, which is however limited to regions near structural domain boundaries.
We report point contact measurements in high quality single crystals of Cu0.2Bi2Se3. We observe three different kinds of spectra: (1) Andreev-reflection spectra, from which we infer a superconducting gap size of 0.6mV; (2) spectra with a large gap which closes above Tc at about 10K; and (3) tunneling-like spectra with zero-bias conductance peaks. These tunneling spectra show a very large gap of ~2meV (2Delta/KTc ~ 14).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا