Do you want to publish a course? Click here

Granular size segregation in underwater sand ripples

83   0   0.0 ( 0 )
 Added by Herve Caps
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report an experimental study of a binary sand bed under an oscillating water flow. The formation and evolution of ripples is observed. The appearance of a granular segregation is shown to strongly depend on the sand bed preparation. The initial wavelength of the mixture is measured. In the final steady state, a segregation in volume is observed instead of a segregation at the surface as reported before. The correlation between this phenomenon and the fluid flow is emphasised. Finally, different ``exotic patterns and their geophysical implications are presented.



rate research

Read More

140 - Zhifeng Li , Zhikun Zeng , Yi Xing 2020
We present an X-ray tomography study of the segregation mechanisms of tracer particles in a three-dimensional cyclically sheared bi-disperse granular medium. Big tracers are dragged by convection to rise to the top surface and then remain trapped there due to the small downward convection cross-section, which leads to segregation. Additionally, we also find that the local structural up-down asymmetry due to arching effect around big tracers will induce the tracers to have a net upward displacement against its smaller neighbors, which is another mechanism for segregation.
The structure of polydisperse hard sphere fluids, in the presence of a wall, is studied by the Rosenfeld density functional theory. Within this approach, the local excess free energy depends on only four combinations of the full set of density fields. The case of continuous polydispersity thereby becomes tractable. We predict, generically, an oscillatory size segregation close to the wall, and connect this, by a perturbation theory for narrow distributions, with the reversible work for changing the size of one particle in a monodisperse reference fluid.
98 - H. Caps , N. Vandewalle 2002
An experimental study of a granular surface submitted to a circular fluid motion is presented. The appearance of an instability along the sand-water interface is observed beyond a critical radius $r_c$. This creates ripples with a spiral shape on the granular surface. A phase diagram of such patterns is constructed and discussed as a function of the rotation speed $omega$ of the flow and as a function of the height of water $h$ above the surface. The study of $r_c$ as a function of $h$, $omega$ and $r$ parameters is reported. Thereafter, $r_c$ is shown to depend on the rotation speed according to a power law. The ripple wavelength is found to decrease when the rotation speed increases and is proportional to the radial distance $r$. The azimuthal angle az of the spiral arms is studied. It is found that az scales with $homega r$. This lead to the conclusion that az depends on the fluid momentum. Comparison with experiments performed with fluids allows us to state that the spiral patterns are not the signature of an instability of the boundary layer.
We measure stability of two-dimensional granular mixtures in a rotating drum and relate grain configurations to stability. For our system, the smaller but smoother grains cluster near the center of the drum, while the larger, rougher grains remain near the outer edge. One consequence of the size segregation is that the smaller grains heavily influence the stability of the heap. We find that the maximum angle of stability is a non-linear function of composition, changing particularly rapidly when small grains are first added to a homogeneous pile of large grains. We conclude that the grain configuration within the central portion of the heap plays a prominent role in stability.
We perform a two-dimensional molecular-dynamics study of a model for sheared bidisperse granular systems under conditions of simple shear and Poiseuille flow. We propose a mechanism for particle-size segregation based on the observation that segregation occurs if the viscous length scale introduced by a liquid in the system is smaller than of the order of the particle size. We show that the ratio of shear rate to viscosity must be small if one wants to find size segregation. In this case the particles in the system arrange themselves in bands of big and small particles oriented along the direction of the flow. Similarly, in Poiseuille flow we find the formation of particle bands. Here, in addition, the variety of time scales in the flow leads to an aggregation of particles in the zones of low shear rate and can suppress size segregation in these regions. The results have been verified against simulations using a full Navier-Stokes description for the liquid.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا