In spite of extensive experimental studies of the angular dependent magnetoresistance (ADMR) of the low temperature phase (LTP) of alpha-(BEDT-TTF)_2KHg(SCN)_4 about a decade ago, the nature of LTP remains elusive. Here we present a new study of ADMR of LTP in alpha-(ET)_2 salts assuming that LTP is unconventional charge density wave (UCDW). In the presence of magnetic field the quasiparticle spectrum in UCDW is quantized, which gives rise to striking ADMR in UCDW. The present model appears to account for many existing ADMR data of alpha-(BEDT-TTF)_2KHg(SCN)_4 remarkably well.
The low temperature phase (LTP) of alpha-(BEDT-TTF)_2KHg(SCN)_4 salt is known for its surprising angular dependent magnetoresistance (ADMR), which has been studied intensively in the last decade. However, the nature of the LTP has not been understood until now. Here we analyse theoretically ADMR in unconventional (or nodal) charge density wave (UCDW). In magnetic field the quasiparticle spectrum in UCDW is quantized, which gives rise to spectacular ADMR. The present model accounts for many striking features of ADMR data in alpha-(BEDT-TTF)_2KHg(SCN)_4.
The dielectric constant and ac conductivity have been measured for the layered organic conductor theta-(BEDT-TTF)_2CsZn(SCN)_4 along the out-of-plane direction, which show a relaxation behavior similar to those in the charge-density-wave conductor. Most unexpectedly, they exhibit a large bias dependence with a hysteresis, and changes in magnitude by 100-1000 times at a threshold. These findings are very similar to the collective excitation of the charge density wave. theta-$(BEDT-TTF)_2CsZn(SCN)_4 has collective excitations associated with charge ordering, though it shows no clear indication of long range order.
The low-temperature charge-density-wave (CDW) state in the layered organic metals $alpha $-(BEDT-TTF)$_2$MHg(SCN)$_4$ has been studied by means of the Shubnikov -- de Haas and de Haas -- van Alphen effects. In addition to the dominant alpha-frequency, which is also observed in the normal state, both the magnetoresistance and magnetic torque possess a slowly oscillating component. These slow oscillations provide a firm evidence for the CDW-induced reconstruction of the original cylindrical Fermi surface. The alpha-oscillations of the interlayer magnetoresistance exhibit an anomalous phase inversion in the CDW state, whereas the de Haas -- van Alphen signal maintains the normal phase. We argue that the anomaly may be attributed to the magnetic-breakdown origin of the alpha-oscillations in the CDW state. A theoretical model illustrating the possibility of a phase inversion in the oscillating interlayer conductivity in the presence of a spatially fluctuating magnetic breakdown gap is proposed.
Since the first observation of weak ferromagnetism in the charge-transfer salt kappa-(BEDT-TTF)2-Cu[N(CN)2]Cl [U. Welp et al., Phys. Rev. Lett. 69, 840 (1992)], no further evidence of ferromagnetism in this class of organic materials has been reported. Here we present static and dynamic spin susceptibility measurements on kappa-(BEDT-TTF)2Hg(SCN)2Br revealing weak ferromagnetism below about TWF = 20 K. We suggest that frustrated spins in the molecular dimers suppress long-range order, forming a spin-glass ground state in the insulating phase.
The infrared spectra of the quasi-two-dimensional organic conductors $alpha$-(BEDT-TTF)$_2$$M$Hg(SCN)$_4$ ($M$ = NH$_4$, Rb, Tl) were measured in the range from 50 to 7000 cm down to low temperatures in order to explore the influence of electronic correlations in quarter-filled metals. The interpretation of electronic spectra was confirmed by measurements of pressure dependant reflectance of $alpha$-(BEDT-TTF)$_2$KHg(SCN)$_4$ at T=300 K. The signatures of charge order fluctuations become more pronounced when going from the NH$_4$ salt to Rb and further to Tl compounds. On reducing the temperature, the metallic character of the optical response in the NH$_4$ and Rb salts increases, and the effective mass diminishes. For the Tl compound, clear signatures of charge order are found albeit the metallic properties still dominate. From the temperature dependence of the electronic scattering rate the crossover temperature is estimated below which the coherent charge-carriers response sets in. The observations are in excellent agreement with recent theoretical predictions for a quarter-filled metallic system close to charge order.