Do you want to publish a course? Click here

On the origin and fate of ionised-gas in early-type galaxies: the SAURON perspective

140   0   0.0 ( 0 )
 Added by Sarzi Marc
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

By detecting ionised-gas emission in 75% of the cases, the SAURON integral-field spectroscopic survey has further demonstrated that early-type galaxies often display nebular emission. Furthermore, the SAURON data have shown that such emission comes with an intriguing variety of morphologies, kinematic behaviours and line ratios. Perhaps most puzzling was the finding that round and slowly rotating objects generally display uncorrelated stellar and gaseous angular momenta, consistent with an external origin for the gas, whereas flatter and fast rotating galaxies host preferentially co-rotating gas and stars, suggesting internal production of gas. Alternatively, a bias against the internal production of ionised gas and against the acquisition of retrograde material may be present in these two kinds of objects, respectively. In light of the different content of hot gas in these systems, with slowly rotating objects being the only systems capable of hosting massive X-ray halos, we suggest that a varying importance of evaporation of warm gas in the hot interstellar medium can contribute to explain the difference in the relative behaviour of gas and stars in these two kinds of objects. Namely, whereas in X-ray bright and slowly rotating galaxies stellar-loss material would quickly evaporate in the hot medium, in X-ray faint and fast rotating objects such material would be allowed to lose angular momentum and settle in a disk, which could also obstruct the subsequent acquisition of retrograde gas. Evidence for a connection between warm and hot gas phases, presumably driven by heat conduction, is presented for four slowly rotating galaxies with CHANDRA observations.



rate research

Read More

A recent determination of the relationships between the X-ray luminosity of the ISM (Lx) and the stellar and total mass, for a sample of nearby early-type galaxies (ETGs), is used to investigate the origin of the hot gas, via a comparison with the results of hydrodynamical simulations of the ISM evolution for a large set of isolated ETGs. After the epoch of major galaxy formation (after z~2), the ISM is replenished by stellar mass losses and SN ejecta, at the rate predicted by stellar evolution, and is depleted by star formation; it is heated by the thermalization of stellar motions, SNe explosions and the mechanical (from winds) and radiative AGN feedback. The models agree well with the observed relations, even for the largely different Lx values at the same mass, thanks to the sensitivity of the gas flow to many galaxy properties; this holds for models including AGN feedback, and those without. Therefore, the mass input from the stellar population is able to account for a major part of the observed Lx; and AGN feedback, while very important to maintain massive ETGs in a time-averaged quasi-steady state, keeping low star formation and the black hole mass, does not dramatically alter the gas content originating in stellar recycled material. These conclusions are based on theoretical predictions for the stellar population contributions in mass and energy, and on a self-consistent modeling of AGN feedback.
We present results of our ongoing study of the morphology and kinematics of the ionised gas in 48 representative nearby elliptical and lenticular galaxies using the SAURON integral-field spectrograph on the 4.2m William Herschel Telescope. Making use of a recently developed technique, emission is detected in 75% of the galaxies. The ionised-gas distributions display varied morphologies, ranging from regular gas disks to filamentary structures. Additionally, the emission-line kinematic maps show, in general, regular motions with smooth variations in kinematic position angle. In most of the galaxies, the ionised-gas kinematics is decoupled from the stellar counterpart, but only some of them present signatures of recent accretion of gaseous material. The presence of dust is very common in our sample and is usually accompanied by gas emission. Our analysis of the [OIII]/Hbeta emission-line ratios, both across the whole sample as well as within the individual galaxies, suggests that there is no unique mechanism triggering the ionisation of the gas.
139 - M. Krips , A.F.Crocker , M. Bureau 2010
In a pilot project to study the relationship between star formation and molecular gas properties in nearby normal early-type galaxies, we used the IRAM 30m telescope to observe the 13CO(J=1-0), 13CO(J=2-1), HCN(J=1-0) and HCO+(J=1-0) line emission in the four galaxies of the SAURON sample with the strongest 12CO emission. We report the detection of 13CO emission in all four SAURON sources and HCN emission in three sources, while no HCO+ emission was found to our detection limits in any of the four galaxies. We find that the 13CO/12CO ratios of three SAURON galaxies are somewhat higher than those in galaxies of different Hubble types. The HCN/12CO and HCN/13CO ratios of all four SAURON galaxies resemble those of nearby Seyfert and dwarf galaxies with normal star formation rates, rather than those of starburst galaxies. The HCN/HCO+ ratio is found to be relatively high (i.e., >1) in the three SAURON galaxies with detected HCN emission, mimicking the behaviour in other star-forming galaxies but being higher than in starburst galaxies. When compared to most galaxies, it thus appears that 13CO is enhanced (relative to 12CO) in three out of four SAURON galaxies and HCO+ is weak (relative to HCN) in three out of three galaxies. All three galaxies detected in HCN follow the standard HCN-infrared luminosity and dense gas fraction-star formation efficiency correlations. As already suggested by 12CO observations, when traced by infrared radiation, star formation in the three SAURON galaxies thus appears to follow the same physical laws as in galaxies of different Hubble types. The star formation rate and fraction of dense molecular gas however do not reach the high values found in nearby starburst galaxies, but rather resemble those of nearby normal star-forming galaxies.
The ACS Virgo cluster survey by Cote and collaborators shows the presence of compact nuclei at the photocenters of many early-type galaxies. It is argued that they are the low-mass counterparts of nuclei hosting Super Massive Black Holes (SBHs) detected in the bright galaxies. If this view is correct, then one should think in terms of central massive objects, either SBHs or Compact Stellar Clusters (CSCs), that accompany the formation of almost all early-type galaxies. In this observational frame, the hypothesis that galactic nuclei may be the remains of globular clusters driven inward to the galactic center by dynamical friction and there merged, finds an exciting possible confirm. In this short paper we report of our recent results on globular cluster mergers obtained by mean of detailed N-body simulations.
The SAURON project will deliver two-dimensional spectroscopic data of a sample of nearby early-type galaxies with unprecedented quality. In this paper, we focus on the mapping of their stellar populations using the SAURON data, and present some preliminary results on a few prototypical cases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا