Do you want to publish a course? Click here

Separating out the Alcock-Paczynski Effect on 21cm Fluctuations

117   0   0.0 ( 0 )
 Added by Rennan Barkana
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We reconsider the Alcock-Paczynski effect on 21cm fluctuations from high redshift, focusing on the 21cm power spectrum. We show that at each accessible redshift both the angular diameter distance and the Hubble constant can be determined from the power spectrum. Furthermore, this is possible using anisotropies that depend only on linear density perturbations and not on astrophysical sources of 21cm fluctuations. We show that measuring these quantities at high redshift would not just confirm results from the cosmic microwave background but provide appreciable additional sensitivity to cosmological parameters and dark energy.



rate research

Read More

Feasibility of the Alcock Paczynski (AP) test by stacking voids in the 21cm line intensity field is presented. We analyze the Illstris-TNG simulation to obtain the 21cm signal map. We then randomly distribute particles depending on the 21cm intensity field to find voids by using publicly available code, VIDE. As in the galaxy clustering, the shape of the stacked void in the 21cm field is squashed along the line of sight due to the peculiar velocities in redshift-space, although it becomes spherical in real-space. The redshift-space distortion for the stacked void weakly depends on redshift and we show that the dependency can be well described by the linear prediction, with the amplitude of the offset being free parameters. We find that the AP test using the stacked voids in a 21cm intensity map is feasible and the parameter estimation on $Omega_{rm m}$ and $w$ is unbiased.
The Alcock-Paczynski (AP) effect is a geometrical distortion in three-dimensional observed galaxy statistics. In anticipation of precision cosmology based on ongoing and upcoming all-sky galaxy surveys, we build an efficient method to compute the AP-distorted correlations of galaxy number density and peculiar velocity fields for any larger angular scale not relying on the conventionally used plane-parallel (PP) approximation. Here, instead of the usual Legendre polynomial basis, the correlation functions are decomposed using tripolar spherical harmonic basis; hence, characteristic angular dependence due to the wide-angle AP effect can be rigorously captured. By means of this, we demonstrate the computation of the AP-distorted correlations over the various scales. Comparing our results with the PP-limit ones, we confirm that the errors due to the PP approximation become more remarkable as the visual angle of separation between target galaxies, $Theta$, enlarges, and especially for the density auto correlation, the error exceeds $10%$ when $Theta gtrsim 30^circ$. This highlights the importance of the analysis beyond the PP approximation.
We perform an Alcock-Paczynski test using stacked cosmic voids identified in the SDSS Data Release 7 main sample and Data Release 10 LOWZ and CMASS samples. We find ~1,500 voids out to redshift $0.6$ using a heavily modified and extended version of the watershed algorithm ZOBOV, which we call VIDE (Void IDentification and Examination). To assess the impact of peculiar velocities we use the mock void catalogs presented in Sutter et al. (2013). We find a constant uniform flattening of 14% along the line of sight when peculiar velocities are included. This flattening appears universal for all void sizes at all redshifts and for all tracer densities. We also use these mocks to identify an optimal stacking strategy. After correcting for systematic effects we find that our Alcock-Paczynski measurement leads to a preference of our best-fit value of $Omega_{rm M}sim 0.15$ over $Omega_{rm M} = 1.0$ by a likelihood ratio of 10. Likewise, we find a factor of $4.5$ preference of the likelihood ratio for a $Lambda$CDM $Omega_{rm M} = 0.3$ model and a null measurement. Taken together, we find substantial evidence for the Alcock-Paczynski signal in our sample of cosmic voids. Our assessment using realistic mocks suggests that measurements with future SDSS releases and other surveys will provide tighter cosmological parameter constraints. The void-finding algorithm and catalogs used in this work will be made publicly available at http://www.cosmicvoids.net.
Baryon acoustic oscillations (BAO), known as one of the largest cosmological objects, is now recognized as standard cosmological tool to measure geometric distances via the Alcock-Paczynski effect, by which the observed BAO exhibits characteristic anisotropies in addition to the redshift distortions. This implies that once we know the correct distances to the observed BAO, the tip points of baryon acoustic peaks in the anisotropic correlation function of galaxies, $xi(sigma,pi)$, can form a great circle (hereafter 2D BAO circle) in the $sigma$ and $pi$ plane, where $sigma$ and $pi$ are the separation of galaxy pair parallel and perpendicular to the line-of-sight, respectively. This 2D BAO circle remains unchanged under the variations of the unknown galaxy bias and/or coherent motion, while it varies transversely and radially with respect to the variations of $D_A$ and $H^{-1}$, respectively. Hereby the ratio between transverse distance $D_A$ and the radial distance $H^{-1}$ reproduces the intrinsic shape of 2D BAO circle, which is {it a priori} given by the known broadband shape of spectra. All BAO peaks of $xi(sigma,pi)$ are precisely calculated with the improved theoretical model of redshift distortion. We test this broadband Alcock--Paczynski method using BOSS--like mock catalogues. The transverse and radial distances are probed in precision of several percentage fractional errors, and the coherent motion is observed to match with the fiducial values accurately.
We perform an anisotropic clustering analysis of 1,133,326 galaxies from the Sloan Digital Sky Survey (SDSS-III) Baryon Oscillation Spectroscopic Survey (BOSS) Data Release (DR) 12 covering the redshift range $0.15<z<0.69$. The geometrical distortions of the galaxy positions, caused by incorrect cosmological model assumptions, are captured in the anisotropic two-point correlation function on scales 6 -- 40 $h^{-1}rm Mpc$. The redshift evolution of this anisotropic clustering is used to place constraints on the cosmological parameters. We improve the methodology of Li et al. 2016, to enable efficient exploration of high dimensional cosmological parameter spaces, and apply it to the Chevallier-Polarski-Linder parametrization of dark energy, $w=w_0+w_a{z}/({1+z})$. In combination with the CMB, BAO, SNIa and $H_0$ from Cepheid data, we obtain $Omega_m = 0.301 pm 0.008, w_0 = -1.042 pm 0.067, $ and $w_a = -0.07 pm 0.29$ (68.3% CL). Adding our new AP measurements to the aforementioned results reduces the error bars by $sim$30 -- 40% and improves the dark energy figure of merit by a factor of $sim$2. We check the robustness of the results using realistic mock galaxy catalogues.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا