Do you want to publish a course? Click here

Kolmogorovs Equations for Jump Markov Processes and their Applications to Continuous-Time Jump Markov Decision Processes

131   0   0.0 ( 0 )
 Added by Eugene Feinberg
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

This paper describes the structure of solutions to Kolmogorovs equations for nonhomogeneous jump Markov processes and applications of these results to control of jump stochastic systems. These equations were studied by Feller (1940), who clarified in 1945 in the errata to that paper that some of its results covered only nonexplosive Markov processes. We present the results for possibly explosive Markov processes. The paper is based on the invited talk presented by the authors at the International Conference dedicated to the 200th anniversary of the birth of P. L.~Chebyshev.



rate research

Read More

This paper extends to Continuous-Time Jump Markov Decision Processes (CTJMDP) the classic result for Markov Decision Processes stating that, for a given initial state distribution, for every policy there is a (randomized) Markov policy, which can be defined in a natural way, such that at each time instance the marginal distributions of state-action pairs for these two policies coincide. It is shown in this paper that this equality takes place for a CTJMDP if the corresponding Markov policy defines a nonexplosive jump Markov process. If this Markov process is explosive, then at each time instance the marginal probability, that a state-action pair belongs to a measurable set of state-action pairs, is not greater for the described Markov policy than the same probability for the original policy. These results are used in this paper to prove that for expected discounted total costs and for average costs per unit time, for a given initial state distribution, for each policy for a CTJMDP the described a Markov policy has the same or better performance.
Semi-Markov processes are a generalization of Markov processes since the exponential distribution of time intervals is replaced with an arbitrary distribution. This paper provides an integro-differential form of the Kolmogorovs backward equations for a large class of homogeneous semi-Markov processes, having the form of an abstract Volterra integro-differential equation. An equivalent evolutionary (differential) form of the equations is also provided. Fractional equations in the time variable are a particular case of our analysis. Weak limits of semi-Markov processes are also considered and their corresponding integro-differential Kolmogorovs equations are identified.
The objective of this work is to study continuous-time Markov decision processes on a general Borel state space with both impulsive and continuous controls for the infinite-time horizon discounted cost. The continuous-time controlled process is shown to be non explosive under appropriate hypotheses. The so-called Bellman equation associated to this control problem is studied. Sufficient conditions ensuring the existence and the uniqueness of a bounded measurable solution to this optimality equation are provided. Moreover, it is shown that the value function of the optimization problem under consideration satisfies this optimality equation. Sufficient conditions are also presented to ensure on one hand the existence of an optimal control strategy and on the other hand the existence of an $varepsilon$-optimal control strategy. The decomposition of the state space in two disjoint subsets is exhibited where roughly speaking, one should apply a gradual action or an impulsive action correspondingly to get an optimal or $varepsilon$-optimal strategy. An interesting consequence of our previous results is as follows: the set of strategies that allow interventions at time $t=0$ and only immediately after natural jumps is a sufficient set for the control problem under consideration.
Transfer entropy has been used to quantify the directed flow of information between source and target variables in many complex systems. While transfer entropy was originally formulated in discrete time, in this paper we provide a framework for considering transfer entropy in continuous time systems, based on Radon-Nikodym derivatives between measures of complete path realizations. To describe the information dynamics of individual path realizations, we introduce the pathwise transfer entropy, the expectation of which is the transfer entropy accumulated over a finite time interval. We demonstrate that this formalism permits an instantaneous transfer entropy rate. These properties are analogous to the behavior of physical quantities defined along paths such as work and heat. We use this approach to produce an explicit form for the transfer entropy for pure jump processes, and highlight the simplified form in the specific case of point processes (frequently used in neuroscience to model neural spike trains). Finally, we present two synthetic spiking neuron model examples to exhibit the pertinent features of our formalism, namely, that the information flow for point processes consists of discontinuous jump contributions (at spikes in the target) interrupting a continuously varying contribution (relating to waiting times between target spikes). Numerical schemes based on our formalism promise significant benefits over existing strategies based on discrete time formalisms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا