Do you want to publish a course? Click here

LightNER: A Lightweight Generative Framework with Prompt-guided Attention for Low-resource NER

194   0   0.0 ( 0 )
 Added by Ningyu Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Most existing NER methods rely on extensive labeled data for model training, which struggles in the low-resource scenarios with limited training data. Recently, prompt-tuning methods for pre-trained language models have achieved remarkable performance in few-shot learning by exploiting prompts as task guidance to reduce the gap between training progress and downstream tuning. Inspired by prompt learning, we propose a novel lightweight generative framework with prompt-guided attention for low-resource NER (LightNER). Specifically, we construct the semantic-aware answer space of entity categories for prompt learning to generate the entity span sequence and entity categories without any label-specific classifiers. We further propose prompt-guided attention by incorporating continuous prompts into the self-attention layer to re-modulate the attention and adapt pre-trained weights. Note that we only tune those continuous prompts with the whole parameter of the pre-trained language model fixed, thus, making our approach lightweight and flexible for low-resource scenarios and can better transfer knowledge across domains. Experimental results show that LightNER can obtain comparable performance in the standard supervised setting and outperform strong baselines in low-resource settings by tuning only a small part of the parameters.

rate research

Read More

104 - Hang Yan , Tao Gui , Junqi Dai 2021
Named Entity Recognition (NER) is the task of identifying spans that represent entities in sentences. Whether the entity spans are nested or discontinuous, the NER task can be categorized into the flat NER, nested NER, and discontinuous NER subtasks. These subtasks have been mainly solved by the token-level sequence labelling or span-level classification. However, these solutions can hardly tackle the three kinds of NER subtasks concurrently. To that end, we propose to formulate the NER subtasks as an entity span sequence generation task, which can be solved by a unified sequence-to-sequence (Seq2Seq) framework. Based on our unified framework, we can leverage the pre-trained Seq2Seq model to solve all three kinds of NER subtasks without the special design of the tagging schema or ways to enumerate spans. We exploit three types of entity representations to linearize entities into a sequence. Our proposed framework is easy-to-implement and achieves state-of-the-art (SoTA) or near SoTA performance on eight English NER datasets, including two flat NER datasets, three nested NER datasets, and three discontinuous NER datasets.
In recent years, great success has been achieved in the field of natural language processing (NLP), thanks in part to the considerable amount of annotated resources. For named entity recognition (NER), most languages do not have such an abundance of labeled data as English, so the performances of those languages are relatively lower. To improve the performance, we propose a general approach called Back Attention Network (BAN). BAN uses a translation system to translate other language sentences into English and then applies a new mechanism named back attention knowledge transfer to obtain task-specific information from pre-trained high-resource languages NER model. This strategy can transfer high-layer features of well-trained model and enrich the semantic representations of the original language. Experiments on three different language datasets indicate that the proposed approach outperforms other state-of-the-art methods.
We propose a novel lightweight generative adversarial network for efficient image manipulation using natural language descriptions. To achieve this, a new word-level discriminator is proposed, which provides the generator with fine-grained training feedback at word-level, to facilitate training a lightweight generator that has a small number of parameters, but can still correctly focus on specific visual attributes of an image, and then edit them without affecting other contents that are not described in the text. Furthermore, thanks to the explicit training signal related to each word, the discriminator can also be simplified to have a lightweight structure. Compared with the state of the art, our method has a much smaller number of parameters, but still achieves a competitive manipulation performance. Extensive experimental results demonstrate that our method can better disentangle different visual attributes, then correctly map them to corresponding semantic words, and thus achieve a more accurate image modification using natural language descriptions.
Neural conversation models have shown great potentials towards generating fluent and informative responses by introducing external background knowledge. Nevertheless, it is laborious to construct such knowledge-grounded dialogues, and existing models usually perform poorly when transfer to new domains with limited training samples. Therefore, building a knowledge-grounded dialogue system under the low-resource setting is a still crucial issue. In this paper, we propose a novel three-stage learning framework based on weakly supervised learning which benefits from large scale ungrounded dialogues and unstructured knowledge base. To better cooperate with this framework, we devise a variant of Transformer with decoupled decoder which facilitates the disentangled learning of response generation and knowledge incorporation. Evaluation results on two benchmarks indicate that our approach can outperform other state-of-the-art methods with less training data, and even in zero-resource scenario, our approach still performs well.
Self-attention is a useful mechanism to build generative models for language and images. It determines the importance of context elements by comparing each element to the current time step. In this paper, we show that a very lightweight convolution can perform competitively to the best reported self-attention results. Next, we introduce dynamic convolutions which are simpler and more efficient than self-attention. We predict separate convolution kernels based solely on the current time-step in order to determine the importance of context elements. The number of operations required by this approach scales linearly in the input length, whereas self-attention is quadratic. Experiments on large-scale machine translation, language modeling and abstractive summarization show that dynamic convolutions improve over strong self-attention models. On the WMT14 English-German test set dynamic convolutions achieve a new state of the art of 29.7 BLEU.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا