Do you want to publish a course? Click here

Simulations of Future Particle Accelerators: Issues and Mitigations

72   0   0.0 ( 0 )
 Added by David Sagan
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The ever increasing demands placed upon machine performance have resulted in the need for more comprehensive particle accelerator modeling. Computer simulations are key to the success of particle accelerators. Many aspects of particle accelerators rely on computer modeling at some point, sometimes requiring complex simulation tools and massively parallel supercomputing. Examples include the modeling of beams at extreme intensities and densities (toward the quantum degeneracy limit), and with ultra-fine control (down to the level of individual particles). In the future, adaptively tuned models might also be relied upon to provide beam measurements beyond the resolution of existing diagnostics. Much time and effort has been put into creating accelerator software tools, some of which are highly successful. However, there are also shortcomings such as the general inability of existing software to be easily modified to meet changing simulation needs. In this paper possible mitigating strategies are discussed for issues faced by the accelerator community as it endeavors to produce better and more comprehensive modeling tools. This includes lack of coordination between code developers, lack of standards to make codes portable and/or reusable, lack of documentation, among others.



rate research

Read More

107 - V.Shiltsev , S.Henderson , P.Hurh 2013
We discuss main issues and R&D Required for the Intensity Frontier Accelerators and therefore provide input for the 2013 APS/DPF Community Summer Study (Snowmass-2013).
Operation, upgrade and development of accelerators for Intensity Frontier face formidable challenges in order to satisfy both the near-term and long-term Particle Physics program. Here we discuss key issues and R&D required for the Intensity Frontier accelerators.
We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.
Virtual Diagnostic (VD) is a computational tool based on deep learning that can be used to predict a diagnostic output. VDs are especially useful in systems where measuring the output is invasive, limited, costly or runs the risk of altering the output. Given a prediction, it is necessary to relay how reliable that prediction is, i.e. quantify the uncertainty of the prediction. In this paper, we use ensemble methods and quantile regression neural networks to explore different ways of creating and analyzing predictions uncertainty on experimental data from the Linac Coherent Light Source at SLAC National Lab. We aim to accurately and confidently predict the current profile or longitudinal phase space images of the electron beam. The ability to make informed decisions under uncertainty is crucial for reliable deployment of deep learning tools on safety-critical systems as particle accelerators.
Machine learning (ML) is a subfield of artificial intelligence. The term applies broadly to a collection of computational algorithms and techniques that train systems from raw data rather than a priori models. ML techniques are now technologically mature enough to be applied to particle accelerators, and we expect that ML will become an increasingly valuable tool to meet new demands for beam energy, brightness, and stability. The intent of this white paper is to provide a high-level introduction to problems in accelerator science and operation where incorporating ML-based approaches may provide significant benefit. We review ML techniques currently being investigated at particle accelerator facilities, and we place specific emphasis on active research efforts and promising exploratory results. We also identify new applications and discuss their feasibility, along with the required data and infrastructure strategies. We conclude with a set of guidelines and recommendations for laboratory managers and administrators, emphasizing the logistical and technological requirements for successfully adopting this technology. This white paper also serves as a summary of the discussion from a recent workshop held at SLAC on ML for particle accelerators.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا