No Arabic abstract
A new class of protocols called mirror benchmarking was recently proposed to measure the system-level performance of quantum computers. These protocols involve circuits with random sequences of gates followed by mirroring, that is, inverting each gate in the sequence. We give a simple proof that mirror benchmarking leads to an exponential decay of the survival probability with sequence length, under the uniform noise assumption, provided the twirling group forms a 2-design. The decay rate is determined by a quantity that is a quadratic function of the error channel, and for certain types of errors is equal to the unitarity. This result yields a new method for estimating the coherence of noise. We present data from mirror benchmarking experiments run on the Honeywell System Model H1. This data constitutes a set of performance curves, indicating the success probability for random circuits as a function of qubit number and circuit depth.
Fault-tolerant quantum error correction (QEC) is crucial for unlocking the true power of quantum computers. QEC codes use multiple physical qubits to encode a logical qubit, which is protected against errors at the physical qubit level. Here we use a trapped ion system to experimentally prepare $m$-qubit GHZ states and sample the measurement results to construct $mtimes m$ logical states of the $[[m^2,1,m]]$ Shor code, up to $m=7$. The synthetic logical fidelity shows how deeper encoding can compensate for additional gate errors in state preparation for larger logical states. However, the optimal code size depends on the physical error rate and we find that $m=5$ has the best performance in our system. We further realize the direct logical encoding of the $[[9,1,3]]$ Shor code on nine qubits in a thirteen-ion chain for comparison, with $98.8(1)%$ and $98.5(1)%$ fidelity for state $leftvertpmrightrangle_L$, respectively.
One-way quantum computing is an important and novel approach to quantum computation. By exploiting the existing particle-particle interactions, we report the first experimental realization of the complete process of deterministic one-way quantum Deutsch-Josza algorithm in NMR, including graph state preparation, single-qubit measurements and feed-forward corrections. The findings in our experiment may shed light on the future scalable one-way quantum computation.
The field of quantum computing has grown from concept to demonstration devices over the past 20 years. Universal quantum computing offers efficiency in approaching problems of scientific and commercial interest, such as factoring large numbers, searching databases, simulating intractable models from quantum physics, and optimizing complex cost functions. Here, we present an 11-qubit fully-connected, programmable quantum computer in a trapped ion system composed of 13 $^{171}$Yb$^{+}$ ions. We demonstrate average single-qubit gate fidelities of 99.5$%$, average two-qubit-gate fidelities of 97.5$%$, and state preparation and measurement errors of 0.7$%$. To illustrate the capabilities of this universal platform and provide a basis for comparison with similarly-sized devices, we compile the Bernstein-Vazirani (BV) and Hidden Shift (HS) algorithms into our native gates and execute them on the hardware with average success rates of 78$%$ and 35$%$, respectively. These algorithms serve as excellent benchmarks for any type of quantum hardware, and show that our system outperforms all other currently available hardware.
We demonstrate a Bayesian quantum game on an ion trap quantum computer with five qubits. The players share an entangled pair of qubits and perform rotations on their qubit as the strategy choice. Two five-qubit circuits are sufficient to run all 16 possible strategy choice sets in a game with four possible strategies. The data are then parsed into player types randomly in order to combine them classically into a Bayesian framework. We exhaustively compute the possible strategies of the game so that the experimental data can be used to solve for the Nash equilibria of the game directly. Then we compare the payoff at the Nash equilibria and location of phase-change-like transitions obtained from the experimental data to the theory, and study how it changes as a function of the amount of entanglement.
Quantum communication relies on the existence of entanglement between two nodes of a network. Since, entanglement can only be produced using local quantum operations, distribution of parts of this entangled system between different nodes becomes necessary. However, due to the extremely fragile nature of entanglement and the presence of losses in the communication channel, the direct distribution of entanglement over large distances is nearly impossible. Quantum repeaters have been proposed to solve this problem. These enable one to establish long-range entanglement by dividing the link into smaller parts, creating entanglement between each part and connecting them up to form the full link. As researchers race to establish entanglement over larger and larger distances, it becomes essential to gauge the performance and robustness of the different protocols that go into designing a quantum repeater, before deploying them in real life. Present day noisy quantum computers are ideal for this task as they can emulate the noisy environment in a quantum communication channel and provide a benchmark for how the protocols will perform on real-life hardware. In this paper, we report the circuit-level implementation of the complete architecture of a Quantum Repeater. All the protocols of the repeater have been bench-marked on IBM Q, the worlds first publicly available cloud quantum computer. The results of our experiment provide a measure for the fidelity of entanglement current repeaters can establish. In addition, the repeater protocol provides a robust benchmark for the current state-of-the-art of quantum computing hardware.