Do you want to publish a course? Click here

Stable and scalable multistage terahertz-driven particle accelerator

210   0   0.0 ( 0 )
 Added by Lingrong Zhao
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Particle accelerators that use electromagnetic fields to increase a charged particles energy have greatly advanced the development of science and industry since invention. However, the enormous cost and size of conventional radio-frequency accelerators have limited their accessibility. Here we demonstrate a mini-accelerator powered by terahertz pulses with wavelengths 100 times shorter than radio-frequency pulses. By injecting a short relativistic electron bunch to a 30-mm-long dielectric-lined waveguide and tuning the frequency of a 20-period terahertz pulse to the phase-velocity-matched value, precise and sustained acceleration for nearly 100% of the electrons is achieved with the beam energy spread essentially unchanged. Furthermore, by accurately controlling the phase of two terahertz pulses, the beam is stably accelerated successively in two dielectric waveguides with close to 100% charge coupling efficiency. Our results demonstrate stable and scalable beam acceleration in a multistage mini-accelerator and pave the way for functioning terahertz-driven high-energy accelerators.



rate research

Read More

Plasma wakefield accelerators are capable of sustaining gigavolt-per-centimeter accelerating fields, surpassing the electric breakdown threshold in state-of-the-art accelerator modules by 3-4 orders of magnitude. Beam-driven wakefields offer particularly attractive conditions for the generation and acceleration of high-quality beams. However, this scheme relies on kilometer-scale accelerators. Here, we report on the demonstration of a millimeter-scale plasma accelerator powered by laser-accelerated electron beams. We showcase the acceleration of electron beams to 130 MeV, consistent with simulations exhibiting accelerating gradients exceeding 100 GV/m. This miniaturized accelerator is further explored by employing a controlled pair of drive and witness electron bunches, where a fraction of the driver energy is transferred to the accelerated witness through the plasma. Such a hybrid approach allows fundamental studies of beam-driven plasma accelerator concepts at widely accessible high-power laser facilities. It is anticipated to provide compact sources of energetic high-brightness electron beams for quality-demanding applications such as free-electron lasers.
We demonstrate the electromagnetic performance of waveguides for femtosecond electron beam bunch manipulation and compression with strong-field terahertz (THz) pulses. The compressor structure is a dispersion-free exponentially-tapered parallel-plate waveguide (PPWG) that can focus single-cycle THz pulses along one dimension. We show test results of the tapered PPWG structure using electro-optic sampling (EOS) at the interaction region with peak fields of at least 300 kV/cm given 0.9 uJ of incoming THz energy. We also present a modified shorted design of the tapered PPWG for better beam manipulation and reduced magnetic field as an alternative to a dual-feed approach. As an example, we demonstrate that with 5 uJ of THz energy, the PPWG compresses a 2.5 MeV electron bunch by a compression factor of more than 4 achieving a bunch length of about 18 fs.
106 - J.-L. Vay , A. Huebl , R. Lehe 2021
Computer modeling is essential to research on Advanced Accelerator Concepts (AAC), as well as to their design and operation. This paper summarizes the current status and future needs of AAC systems and reports on several key aspects of (i) high-performance computing (including performance, portability, scalability, advanced algorithms, scalable I/Os and In-Situ analysis), (ii) the benefits of ecosystems with integrated workflows based on standardized input and output and with integrated frameworks developed as a community, and (iii) sustainability and reliability (including code robustness and usability).
New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN -- the AWAKE experiment -- has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator.
Particle accelerators represent an indispensable tool in science and industry. However, the size and cost of conventional radio-frequency accelerators limit the utility and reach of this technology. Dielectric laser accelerators (DLAs) provide a compact and cost-effective solution to this problem by driving accelerator nanostructures with visible or near-infrared (NIR) pulsed lasers, resulting in a 10$^4$ reduction of scale. Current implementations of DLAs rely on free-space lasers directly incident on the accelerating structures, limiting the scalability and integrability of this technology. Here we present the first experimental demonstration of a waveguide-integrated DLA, designed using a photonic inverse design approach. These on-chip devices accelerate sub-relativistic electrons of initial energy 83.4 keV by 1.21 keV over 30 um, providing peak acceleration gradients of 40.3 MeV/m. This progress represents a significant step towards a completely integrated MeV-scale dielectric laser accelerator.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا