Do you want to publish a course? Click here

Socio-Technological Challenges and Opportunities: Paths Forward

72   0   0.0 ( 0 )
 Added by Carole-Jean Wu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Advancements in digital technologies have a bootstrapping effect. The past fifty years of technological innovations from the computer architecture community have brought innovations and orders-of-magnitude efficiency improvements that engender use cases that were not previously possible -- stimulating novel application domains and increasing uses and deployments at an ever-faster pace. Consequently, computing technologies have fueled significant economic growth, creating education opportunities, enabling access to a wider and more diverse spectrum of information, and, at the same time, connecting people of differing needs in the world together. Technology must be offered that is inclusive of the worlds physical, cultural, and economic diversity, and which is manufactured, used, and recycled with environmental sustainability at the forefront. For the next decades to come, we envision significant cross-disciplinary efforts to build a circular development cycle by placing pervasive connectivity, sustainability, and demographic inclusion at the design forefront in order to sustain and expand the benefits of a technologically rich society. We hope this work will inspire our computing community to take broader and more holistic approaches when developing technological solutions to serve people from different parts of the world.



rate research

Read More

Mobility is the backbone of urban life and a vital economic factor in the development of the world. Rapid urbanization and the growth of mega-cities is bringing dramatic changes in the capabilities of vehicles. Innovative solutions like autonomy, electrification, and connectivity are on the horizon. How, then, we can provide ubiquitous connectivity to the legacy and autonomous vehicles? This paper seeks to answer this question by combining recent leaps of innovation in network virtualization with remarkable feats of wireless communications. To do so, this paper proposes a novel paradigm called the Internet of autonomous vehicles (IoAV). We begin painting the picture of IoAV by discussing the salient features, and applications of IoAV which is followed by a detailed discussion on the key enabling technologies. Next, we describe the proposed layered architecture of IoAV and uncover some critical functions of each layer. This is followed by the performance evaluation of IoAV which shows the significant advantage of the proposed architecture in terms of transmission time and energy consumption. Finally, to best capture the benefits of IoAV, we enumerate some social and technological challenges and explain how some unresolved issues can disrupt the widespread use of autonomous vehicles in the future.
Computing has dramatically changed nearly every aspect of our lives, from business and agriculture to communication and entertainment. As a nation, we rely on computing in the design of systems for energy, transportation and defense; and computing fuels scientific discoveries that will improve our fundamental understanding of the world and help develop solutions to major challenges in health and the environment. Computing has changed our world, in part, because our innovations can run on computers whose performance and cost-performance has improved a million-fold over the last few decades. A driving force behind this has been a repeated doubling of the transistors per chip, dubbed Moores Law. A concomitant enabler has been Dennard Scaling that has permitted these performance doublings at roughly constant power, but, as we will see, both trends face challenges. Consider for a moment the impact of these two trends over the past 30 years. A 1980s supercomputer (e.g. a Cray 2) was rated at nearly 2 Gflops and consumed nearly 200 KW of power. At the time, it was used for high performance and national-scale applications ranging from weather forecasting to nuclear weapons research. A computer of similar performance now fits in our pocket and consumes less than 10 watts. What would be the implications of a similar computing/power reduction over the next 30 years - that is, taking a petaflop-scale machine (e.g. the Cray XK7 which requires about 500 KW for 1 Pflop (=1015 operations/sec) performance) and repeating that process? What is possible with such a computer in your pocket? How would it change the landscape of high capacity computing? In the remainder of this paper, we articulate some opportunities and challenges for dramatic performance improvements of both personal to national scale computing, and discuss some out of the box possibilities for achieving computing at this scale.
The gender gap is a significant concern facing the software industry as the development becomes more geographically distributed. Widely shared reports indicate that gender differences may be specific to each region. However, how complete can these reports be with little to no research reflective of the Open Source Software (OSS) process and communities software is now commonly developed in? Our study presents a multi-region geographical analysis of gender inclusion on GitHub. This mixed-methods approach includes quantitatively investigating differences in gender inclusion in projects across geographic regions and investigate these trends over time using data from contributions to 21,456 project repositories. We also qualitatively understand the unique experiences of developers contributing to these projects through a survey that is strategically targeted to developers in various regions worldwide. Our findings indicate that gender diversity is low across all parts of the world, with no substantial difference across regions. However, there has been statistically significant improvement in diversity worldwide since 2014, with certain regions such as Africa improving at faster pace. We also find that most motivations and barriers to contributions (e.g., lack of resources to contribute and poor working environment) were shared across regions, however, some insightful differences, such as how to make projects more inclusive, did arise. From these findings, we derive and present implications for tools that can foster inclusion in open source software communities and empower contributions from everyone, everywhere.
This paper presents an overview of the emerging area of collaborative intelligence (CI). Our goal is to raise awareness in the signal processing community of the challenges and opportunities in this area of growing importance, where key developments are expected to come from signal processing and related disciplines. The paper surveys the current state of the art in CI, with special emphasis on signal processing-related challenges in feature compression, error resilience, privacy, and system-level design.
Blockchain in supply chain management is expected to boom over the next five years. It is estimated that the global blockchain supply chain market would grow at a compound annual growth rate of 87% and increase from $45 million in 2018 to $3,314.6 million by 2023. Blockchain will improve business for all global supply chain stakeholders by providing enhanced traceability, facilitating digitisation, and securing chain-of-custody. This paper provides a synthesis of the existing challenges in global supply chain and trade operations, as well as the relevant capabilities and potential of blockchain. We further present leading pilot initiatives on applying blockchains to supply chains and the logistics industry to fulfill a range of needs. Finally, we discuss the implications of blockchain on customs and governmental agencies, summarize challenges in enabling the wide scale deployment of blockchain in global supply chain management, and identify future research directions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا