No Arabic abstract
A thin-walled tube, e.g., a drinking straw, manifests an instability when bent by localizing the curvature change in a small region. This instability has been extensively studied since the seminal work of Brazier nearly a century ago. However, the scenario of pressurized tubes has received much less attention. Motivated by rod-shaped bacteria such as E. coli, whose cell walls are much thinner than their radius and are subject to a substantial internal pressure, we study, theoretically, how this instability is affected by this internal pressure. In the parameter range relevant to the bacteria, we find that the internal pressure significantly postpones the onset of the instability, while the bending stiffness of the cell wall has almost no influence. This study suggests a new method to infer turgor pressure in rod-shaped bacteria from bending experiments.
Advances in synthetic biology allow us to engineer bacterial collectives with pre-specified characteristics. However, the behavior of these collectives is difficult to understand, as cellular growth and division as well as extra-cellular fluid flow lead to complex, changing arrangements of cells within the population. To rationally engineer and control the behavior of cell collectives we need theoretical and computational tools to understand their emergent spatiotemporal dynamics. Here, we present an agent-based model that allows growing cells to detect and respond to mechanical interactions. Crucially, our model couples the dynamics of cell growth to the cells environment: Mechanical constraints can affect cellular growth rate and a cell may alter its behavior in response to these constraints. This coupling links the mechanical forces that influence cell growth and emergent behaviors in cell assemblies. We illustrate our approach by showing how mechanical interactions can impact the dynamics of bacterial collectives growing in microfluidic traps.
External control of the swimming speed of `active particles can be used to self assemble designer structures in situ on the micrometer to millimeter scale. We demonstrate such reconfigurable templated active self assembly in a fluid environment using light powered strains of Escherichia coli. The physics and biology controlling the sharpness and formation speed of patterns is investigated using a bespoke fast-responding strain.
When a block made of an elastomer is subjected to large shear, its surface remains flat. When a block of biological soft tissue is subjected to large shear, it is likely that its surface in the plane of shear will buckle (apparition of wrinkles). One factor that distinguishes soft tissues from rubber-like solids is the presence -- sometimes visible to the naked eye -- of oriented collagen fibre bundles, which are stiffer than the elastin matrix into which they are embedded but are nonetheless flexible and extensible. Here we show that the simplest model of isotropic nonlinear elasticity, namely the incompressible neo-Hookean model, suffers surface instability in shear only at tremendous amounts of shear, i.e., above 3.09, which corresponds to a 72 degrees angle of shear. Next we incorporate a family of parallel fibres in the model and show that the resulting solid can be either reinforced or strongly weakened with respect to surface instability, depending on the angle between the fibres and the direction of shear, and depending on the ratio E/mu between the stiffness of the fibres and that of the matrix. For this ratio we use values compatible with experimental data on soft tissues. Broadly speaking, we find that the surface becomes rapidly unstable when the shear takes place against the fibres, and that as E/mu increases, so does the sector of angles where early instability is expected to occur.
We study the shapes of human red blood cells using continuum mechanics. In particular, we model the crenated, echinocytic shapes and show how they may arise from a competition between the bending energy of the plasma membrane and the stretching/shear elastic energies of the membrane skeleton. In contrast to earlier work, we calculate spicule shapes exactly by solving the equations of continuum mechanics subject to appropriate boundary conditions. A simple scaling analysis of this competition reveals an elastic length which sets the length scale for the spicules and is, thus, related to the number of spicules experimentally observed on the fully developed echinocyte.
We report a theoretical study of DNA flexibility and quantitatively predict the ring closure probability as a function of DNA contour length. Recent experimental studies show that the flexibility of short DNA fragments (as compared to the persistence length of DNA l_P~150 base pairs) cannot be described by the traditional worm-like chain (WLC) model, e.g., the observed ring closure probability is much higher than predicted. To explain these observations, DNA flexibility is investigated with explicit considerations of a new length scale l_D~10 base pairs, over which DNA local bend angles are correlated. In this correlated worm-like chain (C-WLC) model, a finite length correction term is analytically derived and the persistence length is found to be contour length dependent. While our model reduces to the traditional worm-like chain model when treating long DNA at length scales much larger than l_P, it predicts that DNA becomes much more flexible at shorter sizes, which helps explain recent cyclization measurements of short DNA fragments around 100 base pairs.