Do you want to publish a course? Click here

Polarization switching of quasi-trapped modes and near field enhancement in bianisotropic all-dielectric metasurfaces

133   0   0.0 ( 0 )
 Added by Andrey Evlyukhin
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

A general strategy for the realization of electric and magnetic quasi-trapped modes located at the same spectral position is presented. This strategys application makes it possible to design metasurfaces allowing switching between the electric and magnetic quasi-trapped modes by changing the polarization of the incident light wave. The developed strategy is based on two stages: the application of the dipole approximation for determining the conditions required for the implementation of trapped modes and the creation of the energy channels for their excitation by introducing a weak bianisotropy in nanoparticles. Since excitation of trapped modes results in a concentration of electric and magnetic energies in the metasurface plane, the polarization switching provides possibilities to change and control the localization and distribution of optical energy at the sub-wavelength scale. We demonstrate a practical method for spectral tuning of quasi-trapped modes in metasurfaces composed of nanoparticles with a pre-selected shape. As an example, the optical properties of a metasurface composed of silicon triangular prisms are analyzed and discussed.



rate research

Read More

We provide a detailed discussion on the electromagnetic modeling and classification of polarization converting bianisotropic metasurfaces. To do so, we first present a general approach to compute the scattering response of such metasurfaces, which relies on a generalized sheet transition conditions based susceptibility model. Then, we review how the fundamental properties of reciprocity, energy conservation, rotation invariance and matching may be expressed in terms of metasurface susceptibilities and scattering parameters, and show how these properties may affect and limit the polarization effects of metasurfaces. Finally, we connect together the metasurface susceptibility model to the structural symmetries of scattering particles and their associated polarization effects. This work thus provides a detailed understanding of the polarization conversion properties of metasurfaces and may prove to be of particular interest for their practical implementation.
All-dielectric metasurfaces consisting of arrays of nanostructured high-refractive-index materials, typically Si, are re-writing what is achievable in terms of the manipulation of light. Such devices support very strong magnetic, as well as electric, resonances, and are free of ohmic losses that severely limit the performance of their plasmonic counterparts. However, the functionality of dielectric-based metasurfaces is fixed-by-design, i.e. the optical response is fixed by the size, arrangement and index of the nanoresonators. A far wider range of applications could be addressed if active/reconfigurable control were possible. We demonstrate this here, via a new hybrid metasurface concept in which active control is achieved by embedding deeply sub-wavelength inclusions of a tuneable chalcogenide phase-change material within the body of high-index Si nanocylinders. Moreover, by strategic placement of the phase-change layer, and switching of its phase-state, we show selective and active control of metasuface resonances. This yields novel functionality, which we showcase via a dual- to mono-band meta-switch operating simultaneously in the O and C telecommunication bands.
All-dielectric, sub-micrometric particles have been successfully exploited for light management in a plethora of applications at visible and near-infrared frequency. However, the investigation of the intricacies of the Mie resonances at the sub-wavelength scale has been hampered by the limitation of conventional near-field methods. Here we address spatial and spectral mapping of multi-polar modes of a Si island by hyper-spectral imaging. The simultaneous detection of several resonant modes allows to clarify the role of substrate and incidence angle of the impinging light, highlighting spectral splitting of the quadrupolar mode and resulting in different spatial features of the field intensity. We explore theoretically and experimentally such spatial features. Details as small as 200 nm can be detected and are in agreement with simulations based on a Finite Difference Time Domain method. Our results are relevant to near-field imaging of dielectric structures, to the comprehension of the photophysics of resonant Mie structures, to beam steering and to the resonant coupling with light emitters. Our analysis paves the way for a novel approach to control the spatial overlap of a single emitter with localized electric field maxima.
Metasurface-mediated bound states in the continuum (BIC) provides a versatile platform for light manipulation at subwavelength dimension with diverging radiative quality factor and extreme optical localization. In this work, we employ magnetic dipole quasi-BIC resonance in asymmetric silicon nanobar metasurfaces to realize giant Goos-Hanchen (GH) shift enhancement by more than three orders of wavelength. In sharp contrast to GH shift based on the Brewster dip or transmission-type resonance, the maximum GH shift here is located at the reflection peak with unity reflectance, which can be conveniently detected in the experiment. By adjusting the asymmetric parameter of metasurfaces, the $Q$-factor and GH shift can be modulated accordingly. More interestingly, it is found that GH shift exhibits an inverse quadratic dependence on the asymmetric parameter. Furthermore, we design an ultrasensitive environmental refractive index sensor based on the quasi-BIC enhanced GH shift, with a maximum sensitivity of 1.5$times$10$^{7}$ $mu$m/RIU. Our work not only reveals the essential role of BIC in engineering the basic optical phenomena, but also suggests the way for pushing the performance limits of optical communication devices, information storage, wavelength division de/multiplexers, and ultrasensitive sensors.
Ultrafast control of light-matter interactions constitutes a crucial feature in view of new technological frontiers of information processing. However, conventional optical elements are either static or feature switching speeds that are extremely low with respect to the timescales at which it is possible to control light. Here, we exploit high-quality-factor engineered epsilon-near-zero (ENZ) modes of a metal-insulator-metal nanocavity to realize an all-optical ultrafast modulation of the reflectance of light at a tailored wavelength. Our approach is based on the presence of the two, spectrally separated, ENZ absorption resonances of the cavity. Optical pumping of the system at its high energy ENZ mode leads to a strong red-shift of the low energy mode because of the transient increase of the local dielectric function, which leads to a sub-3-ps control of the reflectance at a specific wavelength with a relative modulation depth approaching 120%.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا