No Arabic abstract
We provide a detailed discussion on the electromagnetic modeling and classification of polarization converting bianisotropic metasurfaces. To do so, we first present a general approach to compute the scattering response of such metasurfaces, which relies on a generalized sheet transition conditions based susceptibility model. Then, we review how the fundamental properties of reciprocity, energy conservation, rotation invariance and matching may be expressed in terms of metasurface susceptibilities and scattering parameters, and show how these properties may affect and limit the polarization effects of metasurfaces. Finally, we connect together the metasurface susceptibility model to the structural symmetries of scattering particles and their associated polarization effects. This work thus provides a detailed understanding of the polarization conversion properties of metasurfaces and may prove to be of particular interest for their practical implementation.
A general strategy for the realization of electric and magnetic quasi-trapped modes located at the same spectral position is presented. This strategys application makes it possible to design metasurfaces allowing switching between the electric and magnetic quasi-trapped modes by changing the polarization of the incident light wave. The developed strategy is based on two stages: the application of the dipole approximation for determining the conditions required for the implementation of trapped modes and the creation of the energy channels for their excitation by introducing a weak bianisotropy in nanoparticles. Since excitation of trapped modes results in a concentration of electric and magnetic energies in the metasurface plane, the polarization switching provides possibilities to change and control the localization and distribution of optical energy at the sub-wavelength scale. We demonstrate a practical method for spectral tuning of quasi-trapped modes in metasurfaces composed of nanoparticles with a pre-selected shape. As an example, the optical properties of a metasurface composed of silicon triangular prisms are analyzed and discussed.
Metasurfaces are an enabling technology for complex wave manipulation functions, including in the terahertz frequency range, where they are expected to advance security, imaging, sensing, and communications technology. For operation in transmission, Huygens metasurfaces are commonly used, since their good impedance match to the surrounding media minimizes reflections and maximizes transmission. Recent theoretical work has shown that Huygens metasurfaces are non-optimal, particularly for large angles of refraction, and that to eliminate reflections and spurious diffracted beams it is necessary to use a bianisotropic metasurface. However, it remains to be demonstrated how significant the efficiency improvement is when using bianisotropic metasurfaces, considering all the non-ideal features that arise when implementing the metasurface design with real meta-atoms. Here we compare concrete terahertz metasurface designs based on the Huygens and Omega-type bianisotropic approaches, demonstrating anomalous refraction angles for 55 degrees, and 70 degrees. We show that for the lower angle of 55 degrees, there is no significant improvement when using the bianisotropic design, whereas for refraction at 70 degrees the bianisotropic design shows much higher efficiency and fidelity of refraction into the designed direction. We also demonstrate the strong perturbations caused by near-field interaction, both between and within cells, which we compensate using numerical optimization.
Recent advances in metasurfaces have shown the importance of controlling the bianisotropic response of the constituent meta-atoms for maximum efficiency wavefront transformation. Under the paradigm of a bianisotropic metasurface, full control of the local scattering properties is allowed opening new design avenues for creating reciprocal metasurfaces. Despite recent advances in the perfect transformation of both electromagnetic and acoustic plane waves, the importance of bianisotropic metasurfaces for transforming cylindrical waves is still unexplored. Motivated by the possibility of arbitrarily controlling the angular momentum of cylindrical waves, we develop a design methodology for a bianisotropic cylindrical metasurface that enables perfect transformation of cylindrical waves. This formalism is applied to the acoustic scenario and the first experimental demonstration of perfect angular momentum transformation is shown.
We propose a light emitting device with voltage controlled degree of linear polarization of emission. The device combines the ability of metasurfaces to control light with an energy-tunable light source based on indirect excitons in coupled quantum well heterostructures.
For transmissive applications of electromagnetic metasurfaces, an array of subwavelength Huygens metaatoms are typically used to eliminate reflection and achieve a high transmission power efficiency together with a wide transmission phase coverage. We show that the underlying principle of low reflection and full control over transmission is asymmetric scattering into the specular reflection and transmission directions that results from a superposition of symmetric and anti-symmetric scattering components, with Huygens meta-atoms being one example configuration. Available for oblique illumination in TM polarization, a meta-atom configuration comprising normal and tangential electric polarizations is presented, which is capable of reflectionless, fullpower transmission and a $2pi$ transmission phase coverage as well as full absorption. For lossy metasurfaces, we show that a complete phase coverage is still available for reflectionless designs for any value of absorptance. Numerical examples in the microwave and optical regimes are provided.