No Arabic abstract
Symmetry plays a critical role in classifying phases of matter. This is exemplified by how crystalline symmetries enrich the topological classification of materials and enable unconventional phenomena in topologically nontrivial ones. After an extensive study over the past decade, the list of topological crystalline insulators and semimetals seems to be exhaustive and concluded. However, in the presence of gauge symmetry, common but not limited to artificial crystals, the algebraic structure of crystalline symmetries needs to be projectively represented, giving rise to unprecedented topological physics. Here we demonstrate this novel idea by exploiting a projective translation symmetry and constructing a variety of Mobius-twisted topological phases. Experimentally, we realize two Mobius insulators in acoustic crystals for the first time: a two-dimensional one of first-order band topology and a three-dimensional one of higher-order band topology. We observe unambiguously the peculiar Mobius edge and hinge states via real-space visualization of their localiztions, momentum-space spectroscopy of their 4{pi} periodicity, and phase-space winding of their projective translation eigenvalues. Not only does our work open a new avenue for artificial systems under the interplay between gauge and crystalline symmetries, but it also initializes a new framework for topological physics from projective symmetry.
Symmetry plays a key role in modern physics, as manifested in the revolutionary topological classification of matter in the past decade. So far, we seem to have a complete theory of topological phases from internal symmetries as well as crystallographic symmetry groups. However, an intrinsic element, i.e., the gauge symmetry in physical systems, has been overlooked in the current framework. Here, we show that the algebraic structure of crystal symmetries can be projectively enriched due to the gauge symmetry, which subsequently gives rise to new topological physics never witnessed under ordinary symmetries. We demonstrate the idea by theoretical analysis, numerical simulation, and experimental realization of a topological acoustic lattice with projective translation symmetries under a $Z_2$ gauge field, which exhibits unique features of rich topologies, including a single Dirac point, M{o}bius topological insulator and graphene-like semimetal phases on a rectangular lattice. Our work reveals the impact when gauge and crystal symmetries meet together with topology, and opens the door to a vast unexplored land of topological states by projective symmetries.
Square-root topological states are new topological phases, whose topological property is inherited from the square of the Hamiltonian. We realize the first-order and second-order square-root topological insulators in phononic crystals, by putting additional cavities on connecting tubes in the acoustic Su-Schrieffer-Heeger model and the honeycomb lattice, respectively. Because of the square-root procedure, the bulk gap of the squared Hamiltonian is doubled. In both two bulk gaps, the square-root topological insulators possess multiple localized modes, i.e., the end and corner states, which are evidently confirmed by our calculations and experimental observations. We further propose a second-order square-root topological semimetal by stacking the decorated honeycomb lattice to three dimensions.
It has been known that an anti-unitary symmetry such as time-reversal or charge conjugation is needed to realize Z2 topological phases in non-interacting systems. Topological insulators and superconducting nanowires are representative examples of such Z2 topological matters. Here we report the first-known Z2 topological phase protected by only unitary symmetries. We show that the presence of a nonsymmorphic space group symmetry opens a possibility to realize Z2 topological phases without assuming any anti-unitary symmetry. The Z2 topological phases are constructed in various dimensions, which are closely related to each other by Hamiltonian mapping. In two and three dimensions, the Z2 phases have a surface consistent with the nonsymmorphic space group symmetry, and thus they support topological gapless surface states. Remarkably, the surface states have a unique energy dispersion with the Mobius twist, which identifies the Z2 phases experimentally. We also provide the relevant structure in the K-theory.
A quadrupole topological insulator, being one higher-order topological insulator with nontrivial quadrupole quantization, has been intensely investigated very recently. However, the tight-binding model proposed for such emergent topological insulators demands both positive and negative hopping coefficients, which imposes an obstacle in practical realizations. Here we introduce a feasible approach to design the sign of hopping in acoustics, and construct the first acoustic quadrupole topological insulator that stringently emulates the tight-binding model. The inherent hierarchy quadrupole topology has been experimentally confirmed by detecting the acoustic responses at the bulk, edge and corner of the sample. Potential applications can be anticipated for the topologically robust in-gap states, such as acoustic sensing and energy trapping.
A coupled quantum dot--nanocavity system in the weak coupling regime of cavity quantumelectrodynamics is dynamically tuned in and out of resonance by the coherent elastic field of a $f_{rm SAW}simeq800,mathrm{MHz}$ surface acoustic wave. When the system is brought to resonance by the sound wave, light-matter interaction is strongly increased by the Purcell effect. This leads to a precisely timed single photon emission as confirmed by the second order photon correlation function $g^{(2)}$. All relevant frequencies of our experiment are faithfully identified in the Fourier transform of $g^{(2)}$, demonstrating high fidelity regulation of the stream of single photons emitted by the system.