Do you want to publish a course? Click here

Projectively enriched symmetry and topology in acoustic crystals

104   0   0.0 ( 0 )
 Added by Haoran Xue
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Symmetry plays a key role in modern physics, as manifested in the revolutionary topological classification of matter in the past decade. So far, we seem to have a complete theory of topological phases from internal symmetries as well as crystallographic symmetry groups. However, an intrinsic element, i.e., the gauge symmetry in physical systems, has been overlooked in the current framework. Here, we show that the algebraic structure of crystal symmetries can be projectively enriched due to the gauge symmetry, which subsequently gives rise to new topological physics never witnessed under ordinary symmetries. We demonstrate the idea by theoretical analysis, numerical simulation, and experimental realization of a topological acoustic lattice with projective translation symmetries under a $Z_2$ gauge field, which exhibits unique features of rich topologies, including a single Dirac point, M{o}bius topological insulator and graphene-like semimetal phases on a rectangular lattice. Our work reveals the impact when gauge and crystal symmetries meet together with topology, and opens the door to a vast unexplored land of topological states by projective symmetries.



rate research

Read More

Symmetry plays a critical role in classifying phases of matter. This is exemplified by how crystalline symmetries enrich the topological classification of materials and enable unconventional phenomena in topologically nontrivial ones. After an extensive study over the past decade, the list of topological crystalline insulators and semimetals seems to be exhaustive and concluded. However, in the presence of gauge symmetry, common but not limited to artificial crystals, the algebraic structure of crystalline symmetries needs to be projectively represented, giving rise to unprecedented topological physics. Here we demonstrate this novel idea by exploiting a projective translation symmetry and constructing a variety of Mobius-twisted topological phases. Experimentally, we realize two Mobius insulators in acoustic crystals for the first time: a two-dimensional one of first-order band topology and a three-dimensional one of higher-order band topology. We observe unambiguously the peculiar Mobius edge and hinge states via real-space visualization of their localiztions, momentum-space spectroscopy of their 4{pi} periodicity, and phase-space winding of their projective translation eigenvalues. Not only does our work open a new avenue for artificial systems under the interplay between gauge and crystalline symmetries, but it also initializes a new framework for topological physics from projective symmetry.
119 - He Gao , Haoran Xue , Zhongming Gu 2020
Topological phases of matter are classified based on their Hermitian Hamiltonians, whose real-valued dispersions together with orthogonal eigenstates form nontrivial topology. In the recently discovered higher-order topological insulators (TIs), the bulk topology can even exhibit hierarchical features, leading to topological corner states, as demonstrated in many photonic and acoustic artificial materials. Naturally, the intrinsic loss in these artificial materials has been omitted in the topology definition, due to its non-Hermitian nature; in practice, the presence of loss is generally considered harmful to the topological corner states. Here, we report the experimental realization of a higher-order TI in an acoustic crystal, whose nontrivial topology is induced by deliberately introduced losses. With local acoustic measurements, we identify a topological bulk bandgap that is populated with gapped edge states and in-gap corner states, as the hallmark signatures of hierarchical higher-order topology. Our work establishes the non-Hermitian route to higher-order topology, and paves the way to exploring various exotic non-Hermiticity-induced topological phases.
Although fragile topology has been intensely studied in static crystals, it is not clear how to generalize the concept to dynamical systems. In this work, we generalize the concept of fragile topology, and provide a definition of fragile topology for noninteracting Floquet crystals, which we refer to as dynamical fragile topology. In contrast to the static fragile topology defined for Wannier obstruction, dynamical fragile topology is defined for the nontrivial quantum dynamics characterized by obstruction to static limits (OTSL). Specifically, OTSL of a Floquet crystal is fragile if and only if the OTSL disappears after adding a symmetry-preserving static Hamiltonian in a direct-sum way preserving the relevant gaps (RGs). We further present a concrete 2+1D example for dynamical fragile topology, based on a slight modification of the model in [Rudner et al, Phys. Rev. X 3, 031005 (2013)]. The fragile OTSL in the 2+1D example exhibits anomalous chiral edge modes for a natural open boundary condition, and does not require any crystalline symmetries besides lattice translations. Our work paves the way to study fragile topology for general quantum dynamics.
The study of spatial symmetries was accomplished during the last century, and had greatly improved our understanding of the properties of solids. Nowadays, the symmetry data of any crystal can be readily extracted from standard first-principles calculation. On the other hand, the topological data (topological invariants), the defining quantities of nontrivial topological states, are in general considerably difficult to obtain, and this difficulty has critically slowed down the search for topological materials. Here, we provide explicit and exhaustive mappings from symmetry data to topological data for arbitrary gapped band structure in the presence of time-reversal symmetry and any one of the 230 space groups. The mappings are completed using the theoretical tools of layer construction and symmetry-based indicators. With these results, finding topological invariants in any given gapped band structure reduces to a simple search in the mapping tables provided.
The notion of higher-order topological insulators has endowed materials with topological states beyond the first order. Particularly, a three-dimensional (3D) higher-order topological insulator can host topologically protected 1D hinge states, referred to as the second-order topological insulator, or 0D corner states, referred to as the third-order topological insulator. Similarly, a 3D higher-order topological semimetal can be envisaged if it hosts states on the 1D hinges. Here we report the realization of a second-order topological Weyl semimetal in a 3D-printed acoustic crystal, which possesses Weyl points in 3D momentum space, 2D Fermi arc states on surfaces and 1D gapless states on hinges. Like the arc surface states, the hinge states also connect the projections of the Weyl points. Our experimental results evidence the existence of the higher-order topological semimetal, which may pave the way towards innovative acoustic devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا