No Arabic abstract
Altair is the fastest rotating star at less than 10 parsecs from the Sun. Its precise modelling is a landmark for our understanding of stellar evolution with fast rotation, and all observational constraints are most welcome to better determine the fundamental parameters of this star. We wish to improve the seismic spectrum of Altair and confirm the $delta$-Scuti nature of this star. We used the photometric data collected by the Microvariability and Oscillations of STars (MOST) satellite in the form of a series of Fabry images to derive Altair light curves at four epochs, namely in 2007, 2011, 2012, and 2013. We first confirm the presence of $delta$-Scuti oscillations in the light curves of Altair. We extend the precision of some eigenfrequencies and add new ones to the spectrum of Altair, which now has 15 detected eigenmodes. The rotation period, which is expected at $sim$7h46min from models reproducing interferometric data, seems to appear in the 2012 data set, but it still needs confirmation. Finally, Altair modal oscillations show noticeable amplitude variations on a timescale of 10 to 15 days, which may be the signature of a coupling between oscillations and thermal convection in the layer where the kappa-mechanism is operating.The Altair oscillation spectrum does not contain a large number of excited eigenmodes, which is similar to the fast rotating star HD220811. This supports the idea that fast rotation hinders the excitation of eigenmodes as already pointed out by theoretical investigations.
Fast rotation is responsible for important changes in the structure and evolution of stars. Optical long baseline interferometry now permits the study of its effects on the stellar surface, mainly gravity darkening and flattening. We aim to determine the fundamental parameters of the fast-rotating star Altair, in particular its evolutionary stage, mass, and differential rotation, using state-of-the-art stellar interior and atmosphere models together with interferometric, spectroscopic, and asteroseismic observations. We use ESTER 2D stellar models to produce the relevant surface parameters needed to create intensity maps from atmosphere models. Interferometric and spectroscopic observables are computed from these intensity maps and several stellar parameters are then adjusted using the MCMC algorithm Emcee. We determined Altairs equatorial radius to be 2.008 +/- 0.006 Rsun, the position angle 301.1 +/- 0.3 degrees, the inclination 50.7 +/- 1.2 degrees, and the equatorial angular velocity 0.74 +/- 0.01 times the Keplerian angular velocity. This angular velocity leads to a flattening of 0.220 +/- 0.003. We also deduce from the spectroscopically derived vsini ~ 243 km/s, a true equatorial velocity of ~314 km/s corresponding to a rotation period of 7h46m (~3 c/d). The data also impose a strong correlation between mass, metallicity, hydrogen abundance, and core evolution. Thanks to asteroseismic data, we constrain the mass of Altair to 1.86 +/- 0.03 Msun and further deduce its metallicity Z = 0.019 and its core hydrogen mass fraction Xc = 0.71, assuming an initial solar hydrogen mass fraction X = 0.739. These values suggest that Altair is ~100 Myrs old. Finally, the 2D ESTER model also gives the internal differential rotation of Altair, showing that its core rotates approximately 50% faster than the envelope, while the surface differential rotation does not exceed 6%.
The space-borne missions CoRoT and Kepler are indiscreet. With their asteroseismic programs, they tell us what is hidden deep inside the stars. Waves excited just below the stellar surface travel throughout the stellar interior and unveil many secrets: how old is the star, how big, how massive, how fast (or slow) its core is dancing. This paper intends to emph{paparazze} the red giants according to the seismic pictures we have from their interiors.
The internal properties of stars in the red-giant phase undergo significant changes on relatively short timescales. Long near-uninterrupted high-precision photometric timeseries observations from dedicated space missions such as CoRoT and Kepler have provided seismic inferences of the global and internal properties of a large number of evolved stars, including red giants. These inferences are confronted with predictions from theoretical models to improve our understanding of stellar structure and evolution. Our knowledge and understanding of red giants have indeed increased tremendously using these seismic inferences, and we anticipate that more information is still hidden in the data. Unraveling this will further improve our understanding of stellar evolution. This will also have significant impact on our knowledge of the Milky Way Galaxy as well as on exo-planet host stars. The latter is important for our understanding of the formation and structure of planetary systems.
We perform a Bayesian grid-based analysis of the solar l=0,1,2 and 3 p modes obtained via BiSON in order to deliver the first Bayesian asteroseismic analysis of the solar composition problem. We do not find decisive evidence to prefer either of the contending chemical compositions, although the revised solar abundances (AGSS09) are more probable in general. We do find indications for systematic problems in standard stellar evolution models, unrelated to the consequences of inadequate modelling of the outer layers on the higher-order modes. The seismic observables are best fit by solar models that are several hundred million years older than the meteoritic age of the Sun. Similarly, meteoritic age calibrated models do not adequately reproduce the observed seismic observables. Our results suggest that these problems will affect any asteroseismic inference that relies on a calibration to the Sun.
The ZZ Ceti star KUV 02464+3239 was observed over a whole season at the mountain station of Konkoly Observatory. A rigorous frequency analysis revealed 6 certain periods between 619 and 1250 seconds, with no shorter period modes present. We use the observed periods, published effective temperature and surface gravity, along with the model grid code of Bischoff-Kim, Montgomery and Winget (2008) to perform a seismological analysis. We find acceptable model fits with masses between 0.60 and 0.70 M_Sun. The hydrogen layer mass of the acceptable models are almost always between 10^-4 and 10^-6 M_*. In addition to our seismological results, we also show our analysis of individual light curve segments. Considering the non-sinusoidal shape of the light curve and the Fourier spectra of segments showing large amplitude variations, the importance of non-linear effects in the pulsation is clearly seen.