Do you want to publish a course? Click here

A realistic two-dimensional model of Altair

63   0   0.0 ( 0 )
 Added by K\\'evin Bouchaud
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Fast rotation is responsible for important changes in the structure and evolution of stars. Optical long baseline interferometry now permits the study of its effects on the stellar surface, mainly gravity darkening and flattening. We aim to determine the fundamental parameters of the fast-rotating star Altair, in particular its evolutionary stage, mass, and differential rotation, using state-of-the-art stellar interior and atmosphere models together with interferometric, spectroscopic, and asteroseismic observations. We use ESTER 2D stellar models to produce the relevant surface parameters needed to create intensity maps from atmosphere models. Interferometric and spectroscopic observables are computed from these intensity maps and several stellar parameters are then adjusted using the MCMC algorithm Emcee. We determined Altairs equatorial radius to be 2.008 +/- 0.006 Rsun, the position angle 301.1 +/- 0.3 degrees, the inclination 50.7 +/- 1.2 degrees, and the equatorial angular velocity 0.74 +/- 0.01 times the Keplerian angular velocity. This angular velocity leads to a flattening of 0.220 +/- 0.003. We also deduce from the spectroscopically derived vsini ~ 243 km/s, a true equatorial velocity of ~314 km/s corresponding to a rotation period of 7h46m (~3 c/d). The data also impose a strong correlation between mass, metallicity, hydrogen abundance, and core evolution. Thanks to asteroseismic data, we constrain the mass of Altair to 1.86 +/- 0.03 Msun and further deduce its metallicity Z = 0.019 and its core hydrogen mass fraction Xc = 0.71, assuming an initial solar hydrogen mass fraction X = 0.739. These values suggest that Altair is ~100 Myrs old. Finally, the 2D ESTER model also gives the internal differential rotation of Altair, showing that its core rotates approximately 50% faster than the envelope, while the surface differential rotation does not exceed 6%.



rate research

Read More

Altair is the fastest rotating star at less than 10 parsecs from the Sun. Its precise modelling is a landmark for our understanding of stellar evolution with fast rotation, and all observational constraints are most welcome to better determine the fundamental parameters of this star. We wish to improve the seismic spectrum of Altair and confirm the $delta$-Scuti nature of this star. We used the photometric data collected by the Microvariability and Oscillations of STars (MOST) satellite in the form of a series of Fabry images to derive Altair light curves at four epochs, namely in 2007, 2011, 2012, and 2013. We first confirm the presence of $delta$-Scuti oscillations in the light curves of Altair. We extend the precision of some eigenfrequencies and add new ones to the spectrum of Altair, which now has 15 detected eigenmodes. The rotation period, which is expected at $sim$7h46min from models reproducing interferometric data, seems to appear in the 2012 data set, but it still needs confirmation. Finally, Altair modal oscillations show noticeable amplitude variations on a timescale of 10 to 15 days, which may be the signature of a coupling between oscillations and thermal convection in the layer where the kappa-mechanism is operating.The Altair oscillation spectrum does not contain a large number of excited eigenmodes, which is similar to the fast rotating star HD220811. This supports the idea that fast rotation hinders the excitation of eigenmodes as already pointed out by theoretical investigations.
Recently, new solar model atmospheres have been developed to replace classical 1D LTE hydrostatic models and used to for example derive the solar chemical composition. We aim to test various models against key observational constraints. In particular, a 3D model used to derive the solar abundances, a 3D MHD model (with an imposed 10 mT vertical magnetic field), 1D models from the PHOENIX project, the 1D MARCS model, and the 1D semi-empirical model of Holweger & Muller. We confront the models with observational diagnostics of the temperature profile: continuum centre-to-limb variations (CLV), absolute continuum fluxes, and the wings of hydrogen lines. We also test the 3D models for the intensity distribution of the granulation and spectral line shapes. The predictions from the 3D model are in excellent agreement with the continuum CLV observations, performing even better than the Holweger & Muller model (constructed largely to fulfil such observations). The predictions of the 1D theoretical models are worse, given their steeper temperature gradients. For the continuum fluxes, predictions for most models agree well with the observations. No model fits all hydrogen lines perfectly, but again the 3D model comes ahead. The 3D model also reproduces the observed continuum intensity fluctuations and spectral line shapes very well. The excellent agreement of the 3D model with the observables reinforces the view that its temperature structure is realistic. It outperforms the MHD simulation in all diagnostics, implying that recent claims for revised abundances based on MHD modelling are premature. Several weaknesses in the 1D models are exposed. The differences between the PHOENIX LTE and NLTE models are small. We conclude that the 3D hydrodynamical model is superior to any of the tested 1D models, which gives further confidence in the solar abundance analyses based on it.
A two-lane extension of a recently proposed cellular automaton model for traffic flow is discussed. The analysis focuses on the reproduction of the lane usage inversion and the density dependence of the number of lane changes. It is shown that the single-lane dynamics can be extended to the two-lane case without changing the basic properties of the model which are known to be in good agreement with empirical single-vehicle data. Therefore it is possible to reproduce various empirically observed two-lane phenomena, like the synchronization of the lanes, without fine-tuning of the model parameters.
Non-local, time-dependent convection models have been used to explain the location of double-mode pulsations in Cepheids in the HR diagram as well as the existence and location of the red edge of the instability strip. These properties are highly sensitive to model parameters. We use 2D radiation hydrodynamical simulations with realistic microphysics and grey radiative-transfer to model a short period Cepheid. The simulations show that the strength of the convection zone varies significantly over the pulsation period and exhibits a phase shift relative to the variations in radius. We evaluate the convective flux and the work integral as predicted by the most common convection models. It turns out that over one pulsation cycle the model parameter $alpha_{rm c}$, has to be varied by up to a factor of beyond 2 to match the convective flux obtained from the simulations. To bring convective fluxes integrated over the He II convection zone and the overshoot zone below into agreement, this parameter has to be varied by a factor of up to $sim 7.5$ (Kuhfu{ss}). We then present results on the energetics of the convection and overshoot zone by radially symmetric and fluctuating quantities. To successfully model this scenario by a static, one dimensional or even by a simple time-dependent model appears extremely challenging. We conclude that significant improvements are needed to make predictions based on 1D models more robust and to improve the reliability of conclusions on the convection-pulsation coupling drawn from them. Multidimensional simulations can provide guidelines for developing descriptions of convection then applied in traditional 1D modelling.
148 - Cooper Downs 2009
In this work we describe our implementation of a thermodynamic energy equation into the global corona model of the Space Weather Modeling Framework (SWMF), and its development into the new Lower Corona (LC) model. This work includes the integration of the additional energy transport terms of coronal heating, electron heat conduction, and optically thin radiative cooling into the governing magnetohydrodynamic (MHD) energy equation. We examine two different boundary conditions using this model; one set in the upper transition region (the Radiative Energy Balance model), as well as a uniform chromospheric condition where the transition region can be modeled in its entirety. Via observation synthesis from model results and the subsequent comparison to full sun extreme ultraviolet (EUV) and soft X-Ray observations of Carrington Rotation (CR) 1913 centered on Aug 27, 1996, we demonstrate the need for these additional considerations when using global MHD models to describe the unique conditions in the low corona. Through multiple simulations we examine ability of the LC model to asses and discriminate between coronal heating models, and find that a relative simple empirical heating model is adequate in reproducing structures observed in the low corona. We show that the interplay between coronal heating and electron heat conduction provides significant feedback onto the 3D magnetic topology in the low corona as compared to a potential field extrapolation, and that this feedback is largely dependent on the amount of mechanical energy introduced into the corona.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا