No Arabic abstract
The intrinsic performance of type-II InP/GaAsSb double heterojunction bipolar transistors (DHBTs) towards and beyond THz is predicted and analyzed based on a multi-scale technology computer aided design (TCAD) modeling platform calibrated against experimental measurements. Two-dimensional hydrodynamic simulations are combined with 1-D full-band, atomistic quantum transport calculations to shed light on future DHBT generations whose dimensions are decreased step-by-step, starting from the current device configuration. Simulations predict that a peak transit frequency $f_{T,peak}$ of around 1.6 THz could be reached in aggressively scaled type-II DHBTs with a total thickness of 256 nm and an emitter width $W_E$ of 37.5 nm. The corresponding breakdown voltage $BV_{CEO}$ is estimated to be 2.2 V. The investigations are put in perspective with two DHBT performance limiting factors, self-heating and breakdown characteristics.
Practical device architectures are proposed here for the implementation of three-terminal heterojunction bipolar transistor solar cells (3T-HBTSCs). These photovoltaic devices, which have a potential efficiency similar to that of multijunction cells, exhibit reduced spectral sensitivity compared with monolithically and series-connected tandem solar cells. In addition, the simplified n-p-n (or p-n-p) structure does not require the use of tunnel junctions. In this framework, four architectures are proposed and discussed in this paper: 1) one in which the top cell is based on silicon and the bottom cell is based on a heterojunction between silicon and III-V nanomaterials; 2) one in which the top cell is made of amorphous silicon and the bottom cell is made of an amorphous silicon-silicon heterojunction; 3) one based on the use of III-V semiconductors aimed at space applications; and 4) one in which the top cell is based on a perovskite material and the bottom cell is made of a perovskite-silicon heterostructure.
Due to the lack of effective p-type doping in GaN and the adverse effects of surface band-bending of GaN on electron transport, developing practical GaN heterojunction bipolar transistors has been impossible. The recently demonstrated approach of grafting n-type GaN with p-type semiconductors, like Si and GaAs, by employing ultrathin (UO) Al$_2$O$_3$ at the interface of Si/GaN and GaAs/GaN, has shown the feasibility to overcome the poor p-type doping challenge of GaN by providing epitaxy-like interface quality. However, the surface band-bending of GaN that could be influenced by the UO Al2O3 has been unknown. In this work, the band-bending of c-plane, Ga-face GaN with UO Al2O3 deposition at the surface of GaN was studied using X-ray photoelectron spectroscopy (XPS). The study shows that the UO Al2O3 can help in suppressing the upward band-bending of the c-plane, Ga-face GaN with a monotonic reduction trend of the upward band-bending energy from 0.48 eV down to 0.12 eV as the number of UO Al2O3 deposition cycles is increased from 0 to 20 cycles. The study further shows that the band-bending can be mostly recovered after removing the Al2O3 layer, concurring that the change in the density of fixed charge at the GaN surface caused by UO Al2O3 is the main reason for the surface band-bending modulation. The potential implication of the surface band-bending results of AlGaAs/GaAs/GaN npn heterojunction bipolar transistor (HBT) was preliminarily studied via Silvaco(R) simulations.
Despite the exceeding 23% photovoltaic efficiency achieved in organic-inorganic hybrid perovskite solar cells obtaining, the stable materials with desirable band gap are rare and are highly desired. With the aid of first-principles calculations, we predict a new promising family of nontoxic inorganic double perovskites (DPs), namely, silicon (Si)-based halides A$_{2}$SiI$_{6}$ (A = K, Rb, Cs; X = Cl, Br, I). This family containing the earth-abundant Si could be applied for perovskite solar cells (PSCs). Particularly A$_{2}$SiI$_{6}$ exhibits superb physical traits, including suitable band gaps of 0.84-1.15 eV, dispersive lower conduction bands, small carrier effective masses, wide photon absorption in the visible range. Importantly, the good stability at high temperature renders them as promising optical absorbers for solar cells.
Here we present the experimental results of an inverted three-terminal heterojunction bipolar transistor solar cell (HBTSC) made of GaInP/GaAs. The inverted growth and processing enable contacting the intermediate layer (base) from the bottom, which improves the cell performance by reducing shadow factor and series resistance at the same time. With this prototype we show that an inverted processing of a three-terminal solar cell is feasible and pave the way for the application of epitaxial lift-off, substrate reuse and mechanical stacking to the HBTSC which can eventually lead to a low-cost high-efficiency III-V-on-Si HBTSC technology.
Silicon heterojunction (SHJ) solar cells represent a promising technological approach towards higher photovoltaics efficiencies and lower fabrication cost. While the device physics of SHJ solar cells have been studied extensively in the past, the ways in which nanoscopic electronic processes such as charge-carrier generation, recombination, trapping, and percolation affect SHJ device properties macroscopically have yet to be fully understood. We report the study of atomic scale current percolation at state-of-the-art a-Si:H/c-Si heterojunction solar cells under ambient operating conditions, revealing the profound complexity of electronic SHJ interface processes. Using conduction atomic force microscopy (cAFM), it is shown that the macroscopic current-voltage characteristics of SHJ solar cells is governed by the average of local nanometer-sized percolation pathways associated with bandtail states of the doped a-Si:H selective contact leading to above bandgap open circuit voltages ($V_{mbox{OC}}$) as high as 1.2 V ($V_{mbox{OC}}>e E_{mbox{gap}}^{mbox{Si}}$). This is not in violation of photovoltaic device physics but a consequence of the nature of nanometer-scale charge percolation pathways which originate from trap-assisted tunneling causing dark leakage current. We show that the broad distribution of local photovoltage is a direct consequence of randomly trapped charges at a-Si:H dangling bond defects which lead to strong local potential fluctuations and induce random telegraph noise of the dark current.