No Arabic abstract
Practical device architectures are proposed here for the implementation of three-terminal heterojunction bipolar transistor solar cells (3T-HBTSCs). These photovoltaic devices, which have a potential efficiency similar to that of multijunction cells, exhibit reduced spectral sensitivity compared with monolithically and series-connected tandem solar cells. In addition, the simplified n-p-n (or p-n-p) structure does not require the use of tunnel junctions. In this framework, four architectures are proposed and discussed in this paper: 1) one in which the top cell is based on silicon and the bottom cell is based on a heterojunction between silicon and III-V nanomaterials; 2) one in which the top cell is made of amorphous silicon and the bottom cell is made of an amorphous silicon-silicon heterojunction; 3) one based on the use of III-V semiconductors aimed at space applications; and 4) one in which the top cell is based on a perovskite material and the bottom cell is made of a perovskite-silicon heterostructure.
Here we present the experimental results of an inverted three-terminal heterojunction bipolar transistor solar cell (HBTSC) made of GaInP/GaAs. The inverted growth and processing enable contacting the intermediate layer (base) from the bottom, which improves the cell performance by reducing shadow factor and series resistance at the same time. With this prototype we show that an inverted processing of a three-terminal solar cell is feasible and pave the way for the application of epitaxial lift-off, substrate reuse and mechanical stacking to the HBTSC which can eventually lead to a low-cost high-efficiency III-V-on-Si HBTSC technology.
Silicon heterojunction (SHJ) solar cells represent a promising technological approach towards higher photovoltaics efficiencies and lower fabrication cost. While the device physics of SHJ solar cells have been studied extensively in the past, the ways in which nanoscopic electronic processes such as charge-carrier generation, recombination, trapping, and percolation affect SHJ device properties macroscopically have yet to be fully understood. We report the study of atomic scale current percolation at state-of-the-art a-Si:H/c-Si heterojunction solar cells under ambient operating conditions, revealing the profound complexity of electronic SHJ interface processes. Using conduction atomic force microscopy (cAFM), it is shown that the macroscopic current-voltage characteristics of SHJ solar cells is governed by the average of local nanometer-sized percolation pathways associated with bandtail states of the doped a-Si:H selective contact leading to above bandgap open circuit voltages ($V_{mbox{OC}}$) as high as 1.2 V ($V_{mbox{OC}}>e E_{mbox{gap}}^{mbox{Si}}$). This is not in violation of photovoltaic device physics but a consequence of the nature of nanometer-scale charge percolation pathways which originate from trap-assisted tunneling causing dark leakage current. We show that the broad distribution of local photovoltage is a direct consequence of randomly trapped charges at a-Si:H dangling bond defects which lead to strong local potential fluctuations and induce random telegraph noise of the dark current.
We investigate nongeminate recombination in organic solar cells based on copper phthalocyanine (CuPc) and C$_{60}$. Two device architectures, the planar heterojunction (PHJ) and the bulk heterojunction (BHJ), are directly compared in view of differences in charge carrier decay dynamics. We apply a combination of transient photovoltage (TPV) experiments, yielding the small perturbation charge carrier lifetime, and charge extraction measurements, providing the charge carrier density. In organic solar cells, charge photogeneration and recombination primarily occur at the donor--acceptor heterointerface. Whereas the BHJ can often be approximated by an effective medium due to rather small scale phase separation, the PHJ has a well defined two-dimensional heterointerface. To study recombination dynamics in PHJ devices most relevant is the charge accumulation at this interface. As from extraction techniques only the spatially averaged carrier concentration can be determined, we derive the charge carrier density at the interface $n_{int}$ from the open circuit voltage. Comparing the experimental results with macroscopic device simulation we discuss the differences of recombination and charge carrier densities in CuPc:C$_{60}$ PHJ and BHJ devices with respect to the device performance. The open circuit voltage of BHJ is larger than for PHJ at low light intensities, but at 0.3 sun the situation is reversed: here, the PHJ can finally take advantage of its generally longer charge carrier lifetimes, as the active recombination region is smaller.
We propose a new triple-junction solar cell structure composed of a III-V heterojunction bipolar transistor solar cell (HBTSC) stacked on top of, and series-connected to, a Si solar cell (III-V-HBTSC-on-Si). The HBTSC is a novel three-terminal device, whose viability has been recently experimentally demonstrated. It has the theoretical efficiency limit of an independently-connected double-junction solar cell. Here, we perform detailed balance efficiency limit calculations under one-sun illumination that show that the absolute efficiency limit of a III-V-HBTSC-on-Si device is the same as for the conventional current-matched III-V-on-Si triple-junction (47% assuming black-body spectrum, 49% with AM1.5G). However, the range of band-gap energies for which the efficiency limit is above 40% is much wider in the III-V-HBTSC-on-Si stack case. From a technological point of view, the lattice-matched GaInP/GaAs combination is particularly interesting, which has an AM1.5G efficiency limit of 47% with the HBTSC-on-Si structure and 39% if the current-matched III-V-on-Si triple junction is considered. Moreover, we show that interconnecting the terminals of the HBTSC to achieve a two-terminal GaInP/GaAs-HBTSC-on-Si device only reduces the efficiency limit by three points, to 43%. As a result, the GaInP/GaAs-HBTSC-on-Si solar cell becomes a promising device for two-terminal, high-efficiency one-sun operation. For it to also be cost-effective, low-cost technologies must be applied to the III-V material growth, such as high-throughput epitaxy or sequential growth.
Lead sulfide (PbS) quantum dot (QD) photovoltaics have reached impressive efficiencies of 12%, making them particularly promising for future applications. Like many other types of emerging photovoltaic devices, their environmental instability remains the Achilles heel of this technology. In this work, we demonstrate that the degradation processes in PbS QDs which are exposed to oxygenated environments are tightly related to the choice of ligands, rather than their intrinsic properties. In particular, we demonstrate that while 1,2-ethanedithiol (EDT) ligands result in significant oxidation of PbS, lead iodide/lead bromide (PbX2) coated PbS QDs show no signs of oxidation or degradation. Consequently, since the former is ubiquitously used as a hole extraction layer in QD solar cells, it is predominantly responsible for the device performance evolution. The oxidation of EDT-PbS QDs results in a significantly reduced effective QD size, which triggers two competing processes: improved energetic alignment that enhances electron blocking, but reduced charge transport through the layer. At early times, the former process dominates, resulting in the commonly reported, but so far not fully explained initial increase in performance, while the latter governs the onset of degradation and deterioration of the photovoltaic performance. Our work highlights that the stability of PbS quantum dot solar cells can be significantly enhanced by an appropriate choice of ligands for all device components.