Do you want to publish a course? Click here

Multi-Modal Chorus Recognition for Improving Song Search

71   0   0.0 ( 0 )
 Added by Jiaan Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We discuss a novel task, Chorus Recognition, which could potentially benefit downstream tasks such as song search and music summarization. Different from the existing tasks such as music summarization or lyrics summarization relying on single-modal information, this paper models chorus recognition as a multi-modal one by utilizing both the lyrics and the tune information of songs. We propose a multi-modal Chorus Recognition model that considers diverse features. Besides, we also create and publish the first Chorus Recognition dataset containing 627 songs for public use. Our empirical study performed on the dataset demonstrates that our approach outperforms several baselines in chorus recognition. In addition, our approach also helps to improve the accuracy of its downstream task - song search by more than 10.6%.



rate research

Read More

Cued Speech (CS) is a visual communication system for the deaf or hearing impaired people. It combines lip movements with hand cues to obtain a complete phonetic repertoire. Current deep learning based methods on automatic CS recognition suffer from a common problem, which is the data scarcity. Until now, there are only two public single speaker datasets for French (238 sentences) and British English (97 sentences). In this work, we propose a cross-modal knowledge distillation method with teacher-student structure, which transfers audio speech information to CS to overcome the limited data problem. Firstly, we pretrain a teacher model for CS recognition with a large amount of open source audio speech data, and simultaneously pretrain the feature extractors for lips and hands using CS data. Then, we distill the knowledge from teacher model to the student model with frame-level and sequence-level distillation strategies. Importantly, for frame-level, we exploit multi-task learning to weigh losses automatically, to obtain the balance coefficient. Besides, we establish a five-speaker British English CS dataset for the first time. The proposed method is evaluated on French and British English CS datasets, showing superior CS recognition performance to the state-of-the-art (SOTA) by a large margin.
We present a new end-to-end architecture for automatic speech recognition (ASR) that can be trained using emph{symbolic} input in addition to the traditional acoustic input. This architecture utilizes two separate encoders: one for acoustic input and another for symbolic input, both sharing the attention and decoder parameters. We call this architecture a multi-modal data augmentation network (MMDA), as it can support multi-modal (acoustic and symbolic) input and enables seamless mixing of large text datasets with significantly smaller transcribed speech corpora during training. We study different ways of transforming large text corpora into a symbolic form suitable for training our MMDA network. Our best MMDA setup obtains small improvements on character error rate (CER), and as much as 7-10% relative word error rate (WER) improvement over a baseline both with and without an external language model.
Studies on emotion recognition (ER) show that combining lexical and acoustic information results in more robust and accurate models. The majority of the studies focus on settings where both modalities are available in training and evaluation. However, in practice, this is not always the case; getting ASR output may represent a bottleneck in a deployment pipeline due to computational complexity or privacy-related constraints. To address this challenge, we study the problem of efficiently combining acoustic and lexical modalities during training while still providing a deployable acoustic model that does not require lexical inputs. We first experiment with multimodal models and two attention mechanisms to assess the extent of the benefits that lexical information can provide. Then, we frame the task as a multi-view learning problem to induce semantic information from a multimodal model into our acoustic-only network using a contrastive loss function. Our multimodal model outperforms the previous state of the art on the USC-IEMOCAP dataset reported on lexical and acoustic information. Additionally, our multi-view-trained acoustic network significantly surpasses models that have been exclusively trained with acoustic features.
As an important part of speech recognition technology, automatic speech keyword recognition has been intensively studied in recent years. Such technology becomes especially pivotal under situations with limited infrastructures and computational resources, such as voice command recognition in vehicles and robot interaction. At present, the mainstream methods in automatic speech keyword recognition are based on long short-term memory (LSTM) networks with attention mechanism. However, due to inevitable information losses for the LSTM layer caused during feature extraction, the calculated attention weights are biased. In this paper, a novel approach, namely Multi-layer Attention Mechanism, is proposed to handle the inaccurate attention weights problem. The key idea is that, in addition to the conventional attention mechanism, information of layers prior to feature extraction and LSTM are introduced into attention weights calculations. Therefore, the attention weights are more accurate because the overall model can have more precise and focused areas. We conduct a comprehensive comparison and analysis on the keyword spotting performances on convolution neural network, bi-directional LSTM cyclic neural network, and cyclic neural network with the proposed attention mechanism on Google Speech Command datasets V2 datasets. Experimental results indicate favorable results for the proposed method and demonstrate the validity of the proposed method. The proposed multi-layer attention methods can be useful for other researches related to object spotting.
The attention mechanism of the Listen, Attend and Spell (LAS) model requires the whole input sequence to calculate the attention context and thus is not suitable for online speech recognition. To deal with this problem, we propose multi-head monotonic chunk-wise attention (MTH-MoChA), an improved version of MoChA. MTH-MoChA splits the input sequence into small chunks and computes multi-head attentions over the chunks. We also explore useful training strategies such as LSTM pooling, minimum world error rate training and SpecAugment to further improve the performance of MTH-MoChA. Experiments on AISHELL-1 data show that the proposed model, along with the training strategies, improve the character error rate (CER) of MoChA from 8.96% to 7.68% on test set. On another 18000 hours in-car speech data set, MTH-MoChA obtains 7.28% CER, which is significantly better than a state-of-the-art hybrid system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا