No Arabic abstract
Polarization light microscopes are powerful tools for probing molecular order and orientation in birefringent materials. While a multitude of polarization light microscopy techniques are often used to access steady-state properties of birefringent samples, quantitative measurements of the molecular orientation dynamics on the millisecond time scale have remained a challenge. We propose polarized shearing interference microscopy (PSIM), a single-shot quantitative polarization imaging method, for extracting the retardance and orientation angle of the laser beam transmitting through optically anisotropic specimens with complex structures. The measurement accuracy and imaging performances of PSIM are validated by imaging a rotating wave plate and a bovine tendon specimen. We demonstrate that PSIM can quantify the dynamics of a flowing lyotropic chromonic liquid crystal in a microfluidic channel at an imaging speed of 506 frames per second (only limited by the camera frame rate), with a field-of-view of up to $350times350 mu m^2$ and a diffraction-limit spatial resolution of $sim 2mu m$. We envision that PSIM will find a broad range of applications in quantitative material characterization under dynamical conditions.
Birefringent materials or nanostructures that introduce phase differences between two linear polarizations underpin the operation of wave plates for polarization control of light. Here we develop metasurfaces realizing a distinct class of complex-birefringent wave plates, which combine polarization transformation with a judiciously tailored polarization-dependent phase retardance and amplitude filtering via diffraction. We prove that the presence of loss enables the mapping from any chosen generally non-orthogonal pair of polarizations to any other pair at the output. We establish an optimal theoretical design-framework based on pairwise nanoresonator structures and experimentally demonstrate unique properties of metasurfaces in the amplification of small polarization differences and polarization coupling with unconventional phase control. Furthermore, we reveal that these metasurfaces can perform arbitrary transformations of biphoton polarization-encoded quantum states, including the modification of the degree of entanglement. Thereby, such flat devices can facilitate novel types of multi-functional polarization optics for classical and quantum applications.
High space-bandwidth product with high spatial phase sensitivity is indispensable for a single-shot quantitative phase microscopy (QPM) system. It opens avenue for widespread applications of QPM in the field of biomedical imaging. Temporally low coherence length light sources are generally implemented to achieve high spatial phase sensitivity in QPM at the cost of either reduced temporal resolution or smaller field of view (FOV). On the contrary, high temporal coherence light sources like lasers are capable of exploiting the full FOV of the QPM systems at the expense of less spatial phase sensitivity. In the present work, we employed pseudo-thermal light source (PTLS) in QPM which overcomes the limitations of conventional light sources. The capabilities of PTLS over conventional light sources are systematically studied and demonstrated on various test objects like USAF resolution chart and thin optical waveguide (height ~ 8 nm). The spatial phase sensitivity of QPM in case of PTLS is measured to be equivalent to that for white light source. The high-speed and large FOV capabilities of PTLS based QPM is demonstrated by high-speed imaging of live sperm cells that is limited by the camera speed and by imaging extra-ordinary large FOV phase imaging on histopathology placenta tissue samples.
For conventional imaging, the imaging resolution limit is given by the Rayleigh criterion. Exploiting the prior knowledge of imaging objects sparsity and fixed optical system, imaging beyond the conventional Rayleigh limit, which is backed up by numerical simulation and experiments, is achieved by illuminating the object with single-shot thermal light and detecting the objects information at the imaging plane with some sparse-array single-pixel detectors. The quality of sub-Rayleigh imaging with sparse detection is also shown to be related to the effective number of single-pixel detectors and the detection signal-to-noise ratio at the imaging plane.
Multispectral imaging plays an important role in many applications from astronomical imaging, earth observation to biomedical imaging. However, the current technologies are complex with multiple alignment-sensitive components, predetermined spatial and spectral parameters by manufactures. Here, we demonstrate a single-shot multispectral imaging technique that gives flexibility to end-users with a very simple optical setup, thank to spatial correlation and spectral decorrelation of speckle patterns. These seemingly random speckle patterns are point spreading functions (PSFs) generated by light from point sources propagating through a strongly scattering medium. The spatial correlation of PSFs allows image recovery with deconvolution techniques, while the spectral decorrelation allows them to play the role of tune-able spectral filters in the deconvolution process. Our demonstrations utilizing optical physics of strongly scattering media and computational imaging present the most cost-effective approach for multispectral imaging with great advantages.
We present the experimental reconstruction of sub-wavelength features from the far-field intensity of sparse optical objects: sparsity-based sub-wavelength imaging combined with phase-retrieval. As examples, we demonstrate the recovery of random and ordered arrangements of 100 nm features with the resolution of 30 nm, with an illuminating wavelength of 532 nm. Our algorithmic technique relies on minimizing the number of degrees of freedom; it works in real-time, requires no scanning, and can be implemented in all existing microscopes - optical and non-optical.