No Arabic abstract
High space-bandwidth product with high spatial phase sensitivity is indispensable for a single-shot quantitative phase microscopy (QPM) system. It opens avenue for widespread applications of QPM in the field of biomedical imaging. Temporally low coherence length light sources are generally implemented to achieve high spatial phase sensitivity in QPM at the cost of either reduced temporal resolution or smaller field of view (FOV). On the contrary, high temporal coherence light sources like lasers are capable of exploiting the full FOV of the QPM systems at the expense of less spatial phase sensitivity. In the present work, we employed pseudo-thermal light source (PTLS) in QPM which overcomes the limitations of conventional light sources. The capabilities of PTLS over conventional light sources are systematically studied and demonstrated on various test objects like USAF resolution chart and thin optical waveguide (height ~ 8 nm). The spatial phase sensitivity of QPM in case of PTLS is measured to be equivalent to that for white light source. The high-speed and large FOV capabilities of PTLS based QPM is demonstrated by high-speed imaging of live sperm cells that is limited by the camera speed and by imaging extra-ordinary large FOV phase imaging on histopathology placenta tissue samples.
Quantitative phase microscopy (QPM) has found significant applications in the field of biomedical imaging which works on the principle of interferometry. The theory behind achieving interference in QPM with conventional light sources such as white light and lasers is very well developed. Recently, the use of dynamic speckle illumination (DSI) in QPM has attracted attention due to its advantages over conventional light sources such as high spatial phase sensitivity, single shot, scalable field of view (FOV) and resolution. However, the understanding behind obtaining interference fringes in QPM with DSI has not been convincingly covered previously. This imposes a constraint on obtaining interference fringes in QPM using DSI and limits its widespread penetration in the field of biomedical imaging. The present article provides the basic understanding of DSI through both simulation and experiments that is essential to build interference optical microscopy systems such as QPM, digital holographic microscopy and optical coherence tomography. Using the developed theory of DSI we demonstrate its capabilities of using non-identical objective lenses in both arms of the interference microscopy without degrading the interference fringe contrast and providing the flexibility to use user-defined microscope objective lens. It is also demonstrated that the interference fringes are not washed out over a large range of optical path difference (OPD) between the object and the reference arm providing competitive edge over low temporal coherence light sources. The theory and explanation developed here would enable wider penetration of DSI based QPM for applications in biology and material sciences.
Mid-infrared photothermal (MIP) microscopy has been a promising label-free chemical imaging technique for functional characterization of specimens owing to its enhanced spatial resolution and high specificity. Recently developed wide-field MIP imaging modalities have drastically improved speed and enabled high-throughput imaging of micron-scale subjects. However, the weakly scattered signal from sub-wavelength particles becomes indistinguishable from the shot-noise as a consequence of the strong background light, leading to limited sensitivity. Here, we demonstrate background-suppressed chemical fingerprinting at a single nanoparticle level by selectively attenuating the reflected light through pupil engineering in the collection path. Our technique provides over three orders of magnitude background suppression by quasi-darkfield illumination in epi-configuration without sacrificing lateral resolution. We demonstrate 6-fold signal-to-background noise ratio improvement, allowing for simultaneous detection and discrimination of hundreds of nanoparticles across a field of view of 70 um x 70 um. A comprehensive theoretical framework for photothermal image formation is provided and experimentally validated with 300 and 500~nm PMMA beads. The versatility and utility of our technique are demonstrated via hyperspectral dark-field MIP imaging of S. aureus and E. coli bacteria.
We present a technically simple implementation of quantitative phase imaging in confocal microscopy based on synthetic optical holography with sinusoidal-phase reference waves. Using a Mirau interference objective and low-amplitude vertical sample vibration with a piezo-controlled stage, we record synthetic holograms on commercial confocal microscopes (Nikon, model: A1R; Zeiss: model: LSM-880), from which quantitative phase images are reconstructed. We demonstrate our technique by stain-free imaging of cervical (HeLa) and ovarian (ES-2) cancer cells and stem cell (mHAT9a) samples. Our technique has the potential to extend fluorescence imaging applications in confocal microscopy by providing label-free cell finding, monitoring cell morphology, as well as non-perturbing long-time observation of live cells based on quantitative phase contrast.
We propose and experimentally demonstrate a method of polarization-sensitive quantitative phase imaging using two photo detectors. Instead of recording wide-field interference patterns, finding the modulation patterns maximizing focused intensities in terms of the polarization states enables polarization-dependent quantitative phase imaging without the need for a reference beam and an image sensor. The feasibility of the present method is experimentally validated by reconstructing Jones matrices of various samples including a polystyrene microsphere, a maize starch granule, and a rat retinal nerve fiber layer. Since the present method is simple and sufficiently general, we expect that it may offer solutions for quantitative phase imaging of birefringent materials.
Polarization light microscopes are powerful tools for probing molecular order and orientation in birefringent materials. While a multitude of polarization light microscopy techniques are often used to access steady-state properties of birefringent samples, quantitative measurements of the molecular orientation dynamics on the millisecond time scale have remained a challenge. We propose polarized shearing interference microscopy (PSIM), a single-shot quantitative polarization imaging method, for extracting the retardance and orientation angle of the laser beam transmitting through optically anisotropic specimens with complex structures. The measurement accuracy and imaging performances of PSIM are validated by imaging a rotating wave plate and a bovine tendon specimen. We demonstrate that PSIM can quantify the dynamics of a flowing lyotropic chromonic liquid crystal in a microfluidic channel at an imaging speed of 506 frames per second (only limited by the camera frame rate), with a field-of-view of up to $350times350 mu m^2$ and a diffraction-limit spatial resolution of $sim 2mu m$. We envision that PSIM will find a broad range of applications in quantitative material characterization under dynamical conditions.