Do you want to publish a course? Click here

Ramsey imaging of optical traps

62   0   0.0 ( 0 )
 Added by Andrea Alberti
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Mapping the potential landscape with high spatial resolution is crucial for quantum technologies based on ultracold atoms. Yet, imaging optical dipole traps is challenging because purely optical methods, commonly used to profile laser beams in free space, are not applicable in vacuum. In this work, we demonstrate precise in-situ imaging of optical dipole traps by probing a hyperfine transition with Ramsey interferometry. Thereby, we obtain an absolute map of the potential landscape with micrometer resolution and shot-noise-limited spectral precision. The idea of the technique is to control the polarization ellipticity of the trap laser beam to induce a differential light shift proportional to the trap potential. By studying the response to polarization ellipticity, we uncover a small but significant nonlinearity in addition to a dominant linear behavior, which is explained by the geometric distribution of the atomic ensemble. Our technique for imaging of optical traps can find wide application in quantum technologies based on ultracold atoms, as it applies to multiple atomic species and is not limited to a particular wavelength or trap geometry.

rate research

Read More

We present a proposal for the realization of entanglement Hamiltonians in one-dimensional critical spin systems with strongly interacting cold atoms. Our approach is based on the notion that the entanglement spectrum of such systems can be realized with a physical Hamiltonian containing a set of position-dependent couplings. We focus on reproducing the universal ratios of the entanglement spectrum for systems in two different geometries: a harmonic trap, which corresponds to a partition embedded in an infinite system, and a linear potential, which reproduces the properties of a half-partition with open boundary conditions. Our results demonstrate the possibility of measuring the entanglement spectra of the Heisenberg and XX models in a realistic cold-atom experimental setting by simply using gravity and standard trapping techniques.
We introduce a Ramsey pulse scheme which extracts the non-Hermitian Hamiltonian associated to an arbitrary Lindblad dynamics. We propose a realted protocol to measure via interferometry a generalised Loschmidt echo of a generic state evolving in time with the non-Hermitian Hamiltonian itself, and we apply the scheme to a one-dimensional weakly interacting Bose gas coupled to a stochastic atomic impurity. The Loschmidt echo is mapped into a functional integral from which we calculate the long-time decohering dynamics at arbitrary impurity strengths. For strong dissipation we uncover the phenomenology of a quantum many-body Zeno effect: corrections to the decoherence exponent resulting from the impurity self-energy becomes purely imaginary, in contrast to the regime of small dissipation where they instead enhance the decay of quantum coherences. Our results illustrate the prospects for experiments employing Ramsey interferometry to study dissipative quantum impurities in condensed matter and cold atoms systems.
472 - D. Hu , L. X. Niu , S. J. Jin 2017
Ramsey interferometers (RIs) using internal electronic or nuclear states find wide applications in science and engineering. We develop a matter wave Ramsey interferometer for motional quantum states exploiting the S- and D-bands of an optical lattice and identify the different de-phasing and de-coherence mechanisms. We implement a band echo technique, employing repeated $pi$-pulses. This suppresses the de-phasing evolution and significantly increase the coherence time of the motional state interferometer by one order of magnitude. We identify thermal fluctuations as the main mechanism for the remaining decay contrast. Our demonstration of an echo-Ramsey interferometer with motional quantum states in an optical lattice has potential application in the study of quantum many body lattice dynamics, and motional qubits manipulation.
Understanding collisions between ultracold molecules is crucial for making stable molecular quantum gases and harnessing their rich internal degrees of freedom for quantum engineering. Transient complexes can strongly influence collisional physics, but in the ultracold regime, key aspects of their behavior have remained unknown. To explain experimentally observed loss of ground-state molecules from optical dipole traps, it was recently proposed that molecular complexes can be lost due to photo-excitation. By trapping molecules in a repulsive box potential using laser light near a narrow molecular transition, we are able to test this hypothesis with light intensities three orders of magnitude lower than what is typical in red-detuned dipole traps. This allows us to investigate light-induced collisional loss in a gas of nonreactive fermionic $^{23}$Na$^{40}$K molecules. Even for the lowest intensities available in our experiment, our results are consistent with universal loss, meaning unit loss probability inside the short-range interaction potential. Our findings disagree by at least two orders of magnitude with latest theoretical predictions, showing that crucial aspects of molecular collisions are not yet understood, and provide a benchmark for the development of new theories.
We analyze free expansion of a trapped one-dimensional Bose gas after a sudden release from the confining trap potential. By using the stationary phase and local density approximations, we show that the long-time asymptotic density profile and the momentum distribution of the gas are determined by the initial distribution of Bethe rapidities (quasimomenta) and hence can be obtained from the solutions to the Lieb-Liniger equations in the thermodynamic limit. For expansion from a harmonic trap, and in the limits of very weak and very strong interactions, we recover the self-similar scaling solutions known from the hydrodynamic approach. For all other power-law traps and arbitrary interaction strengths, the expansion is not self-similar and shows strong dependence of the density profile evolution on the trap anharmonicity. We also characterize dynamical fermionization of the expanding cloud in terms of correlation functions describing phase and density fluctuations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا