Do you want to publish a course? Click here

Echo-Ramsey Interferometry with Motional Quantum States

473   0   0.0 ( 0 )
 Added by Joerg Schmiedmayer
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ramsey interferometers (RIs) using internal electronic or nuclear states find wide applications in science and engineering. We develop a matter wave Ramsey interferometer for motional quantum states exploiting the S- and D-bands of an optical lattice and identify the different de-phasing and de-coherence mechanisms. We implement a band echo technique, employing repeated $pi$-pulses. This suppresses the de-phasing evolution and significantly increase the coherence time of the motional state interferometer by one order of magnitude. We identify thermal fluctuations as the main mechanism for the remaining decay contrast. Our demonstration of an echo-Ramsey interferometer with motional quantum states in an optical lattice has potential application in the study of quantum many body lattice dynamics, and motional qubits manipulation.



rate research

Read More

We introduce a Ramsey pulse scheme which extracts the non-Hermitian Hamiltonian associated to an arbitrary Lindblad dynamics. We propose a realted protocol to measure via interferometry a generalised Loschmidt echo of a generic state evolving in time with the non-Hermitian Hamiltonian itself, and we apply the scheme to a one-dimensional weakly interacting Bose gas coupled to a stochastic atomic impurity. The Loschmidt echo is mapped into a functional integral from which we calculate the long-time decohering dynamics at arbitrary impurity strengths. For strong dissipation we uncover the phenomenology of a quantum many-body Zeno effect: corrections to the decoherence exponent resulting from the impurity self-energy becomes purely imaginary, in contrast to the regime of small dissipation where they instead enhance the decay of quantum coherences. Our results illustrate the prospects for experiments employing Ramsey interferometry to study dissipative quantum impurities in condensed matter and cold atoms systems.
We theoretically investigate the dynamics of a gas of strongly interacting Rydberg atoms subject to a time-domain Ramsey interferometry protocol. The many-body dynamics is governed by an Ising-type Hamiltonian with long range interactions of tunable strength. We analyze and model the contrast degradation and phase accumulation of the Ramsey signal and identify scaling laws for varying interrogation times, ensemble densities, and ensemble dimensionalities.
121 - G. Mazzarella 2012
We analyze phase interferometry realized with a bosonic Josephson junction made of trapped dilute and ultracold atoms. By using a suitable phase sensitivity indicator we study the zero temperature junction states useful to achieve sub shot-noise precisions. Sub shot-noise phase shift sensitivities can be reached even at finite temperature under a suitable choice of the junction state. We infer a scaling law in terms of the size system (that is, the number of particles) for the temperature at which the shot-noise limit is not overcome anymore
118 - C. Marzok , B. Deh , S. Slama 2008
We report on the first observation of Bragg scattering of an ultracold $^6$Li Fermi gas. We demonstrate a Ramsey-type matter-wave interferometer based on Bragg diffraction and find robust signatures of persistent matter wave coherences using an echo pulse sequence. Because of the Pauli principle, the diffracted fermions oscillate nearly unperturbed in the trapping potential for long times beyond 2 s. This suggests extremely long coherence times. On these timescales, only the presence of a $^{87}$Rb cloud seems sufficient to induce noticeable perturbations.
Mapping the potential landscape with high spatial resolution is crucial for quantum technologies based on ultracold atoms. Yet, imaging optical dipole traps is challenging because purely optical methods, commonly used to profile laser beams in free space, are not applicable in vacuum. In this work, we demonstrate precise in-situ imaging of optical dipole traps by probing a hyperfine transition with Ramsey interferometry. Thereby, we obtain an absolute map of the potential landscape with micrometer resolution and shot-noise-limited spectral precision. The idea of the technique is to control the polarization ellipticity of the trap laser beam to induce a differential light shift proportional to the trap potential. By studying the response to polarization ellipticity, we uncover a small but significant nonlinearity in addition to a dominant linear behavior, which is explained by the geometric distribution of the atomic ensemble. Our technique for imaging of optical traps can find wide application in quantum technologies based on ultracold atoms, as it applies to multiple atomic species and is not limited to a particular wavelength or trap geometry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا