Do you want to publish a course? Click here

SpeechBrain: A General-Purpose Speech Toolkit

85   0   0.0 ( 0 )
 Added by Mirco Ravanelli
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to facilitate the research and development of neural speech processing technologies by being simple, flexible, user-friendly, and well-documented. This paper describes the core architecture designed to support several tasks of common interest, allowing users to naturally conceive, compare and share novel speech processing pipelines. SpeechBrain achieves competitive or state-of-the-art performance in a wide range of speech benchmarks. It also provides training recipes, pretrained models, and inference scripts for popular speech datasets, as well as tutorials which allow anyone with basic Python proficiency to familiarize themselves with speech technologies.



rate research

Read More

The availability of open-source software is playing a remarkable role in the popularization of speech recognition and deep learning. Kaldi, for instance, is nowadays an established framework used to develop state-of-the-art speech recognizers. PyTorch is used to build neural networks with the Python language and has recently spawn tremendous interest within the machine learning community thanks to its simplicity and flexibility. The PyTorch-Kaldi project aims to bridge the gap between these popular toolkits, trying to inherit the efficiency of Kaldi and the flexibility of PyTorch. PyTorch-Kaldi is not only a simple interface between these software, but it embeds several useful features for developing modern speech recognizers. For instance, the code is specifically designed to naturally plug-in user-defined acoustic models. As an alternative, users can exploit several pre-implemented neural networks that can be customized using intuitive configuration files. PyTorch-Kaldi supports multiple feature and label streams as well as combinations of neural networks, enabling the use of complex neural architectures. The toolkit is publicly-released along with a rich documentation and is designed to properly work locally or on HPC clusters. Experiments, that are conducted on several datasets and tasks, show that PyTorch-Kaldi can effectively be used to develop modern state-of-the-art speech recognizers.
This paper presents fairseq S^2, a fairseq extension for speech synthesis. We implement a number of autoregressive (AR) and non-AR text-to-speech models, and their multi-speaker variants. To enable training speech synthesis models with less curated data, a number of preprocessing tools are built and their importance is shown empirically. To facilitate faster iteration of development and analysis, a suite of automatic metrics is included. Apart from the features added specifically for this extension, fairseq S^2 also benefits from the scalability offered by fairseq and can be easily integrated with other state-of-the-art systems provided in this framework. The code, documentation, and pre-trained models are available at https://github.com/pytorch/fairseq/tree/master/examples/speech_synthesis.
We introduce jiant, an open source toolkit for conducting multitask and transfer learning experiments on English NLU tasks. jiant enables modular and configuration-driven experimentation with state-of-the-art models and implements a broad set of tasks for probing, transfer learning, and multitask training experiments. jiant implements over 50 NLU tasks, including all GLUE and SuperGLUE benchmark tasks. We demonstrate that jiant reproduces published performance on a variety of tasks and models, including BERT and RoBERTa. jiant is available at https://jiant.info.
Neural latent variable models enable the discovery of interesting structure in speech audio data. This paper presents a comparison of two different approaches which are broadly based on predicting future time-steps or auto-encoding the input signal. Our study compares the representations learned by vq-vae and vq-wav2vec in terms of sub-word unit discovery and phoneme recognition performance. Results show that future time-step prediction with vq-wav2vec achieves better performance. The best system achieves an error rate of 13.22 on the ZeroSpeech 2019 ABX phoneme discrimination challenge
A special purpose learning system assumes knowledge of admissible tasks at design time. Adapting such a system to unforeseen tasks requires architecture manipulation such as adding an output head for each new task or dataset. In this work, we propose a task-agnostic vision-language system that accepts an image and a natural language task description and outputs bounding boxes, confidences, and text. The system supports a wide range of vision tasks such as classification, localization, question answering, captioning, and more. We evaluate the systems ability to learn multiple skills simultaneously, to perform tasks with novel skill-concept combinations, and to learn new skills efficiently and without forgetting.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا