Do you want to publish a course? Click here

Locating the Most Vortical Fluid in Nuclear Collisions with Beam Energy Scan

98   0   0.0 ( 0 )
 Added by Hongxi Xing
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

In 2017, STAR Collaboration reported the measurements of hyperon global polarization in heavy ion collisions, suggesting the subatomic fireball fluid created in these collisions as the most vortical fluid. There remains the interesting question: at which beam energy the truly most vortical fluid will be located. In this work we perform a systematic study on the beam energy dependence of hyperon global polarization phenomenon, especially in the interesting $hat{O}(1sim 10) rm GeV$ region. We find a non-monotonic trend, with the global polarization to first increase and then decrease when beam energy is lowered from $27~rm GeV$ down to $3~rm GeV$. The maximum polarization signal has been identified around $sqrt{s_{NN}} = 7.7~rm GeV$, where the heavy ion collisions presumably create the most vortical fluid. Detailed experimental measurements in the $hat{O}(1sim 10) rm GeV$ beam energy region are expected to test the prediction very soon.



rate research

Read More

151 - H. Petersen 2017
The goal of heavy ion reactions at low beam energies is to explore the QCD phase diagram at high net baryon chemical potential. To relate experimental observations with a first order phase transition or a critical endpoint, dynamical approaches for the theoretical description have to be developed. In this summary of the corresponding plenary talk, the status of the dynamical modeling including the most recent advances is presented. The remaining challenges are highlighted and promising experimental measurements are pointed out.
59 - STAR Collaboration 2017
The extreme temperatures and energy densities generated by ultra-relativistic collisions between heavy nuclei produce a state of matter with surprising fluid properties. Non-central collisions have angular momentum on the order of 1000$hbar$, and the resulting fluid may have a strong vortical structure that must be understood to properly describe the fluid. It is also of particular interest because the restoration of fundamental symmetries of quantum chromodynamics is expected to produce novel physical effects in the presence of strong vorticity. However, no experimental indications of fluid vorticity in heavy ion collisions have so far been found. Here we present the first measurement of an alignment between the angular momentum of a non-central collision and the spin of emitted particles, revealing that the fluid produced in heavy ion collisions is by far the most vortical system ever observed. We find that $Lambda$ and $overline{Lambda}$ hyperons show a positive polarization of the order of a few percent, consistent with some hydrodynamic predictions. A previous measurement that reported a null result at higher collision energies is seen to be consistent with the trend of our new observations, though with larger statistical uncertainties. These data provide the first experimental access to the vortical structure of the perfect fluid created in a heavy ion collision. They should prove valuable in the development of hydrodynamic models that quantitatively connect observations to the theory of the Strong Force. Our results extend the recent discovery of hydrodynamic spin alignment to the subatomic realm.
112 - M. Alvioli , M. Strikman 2010
We develop a new approach to production of the spectator nucleons in the heavy ion collisions. The energy transfer to the spectator system is calculated using the Monte Carlo based on the updated version of our generator of configurations in colliding nuclei which includes a realistic account of short-range correlations in nuclei. The transferred energy distributions are calculated within the framework of the Glauber multiple scattering theory, taking into account all the individual inelastic and elastic collisions using an independent realistic calculation of the potential energy contribution of each of the nucleon-nucleon pairs to the total potential. We show that the dominant mechanism of the energy transfer is tearing apart pairs of nucleons with the major contribution coming from the short-range correlations. We calculate the momentum distribution of the emitted nucleons which is strongly affected by short range correlations including its dependence on the azimuthal angle. In particular, we predict a strong angular asymmetry along the direction of the impact parameter b, providing a unique opportunity to determine the direction of b. Also, we predict a strong dependence of the shape of the nucleon momentum distribution on the centrality of the nucleus-nucleus collision.
A state-of-the-art 3+1 dimensional cascade + viscous hydro + cascade model vHLLE+UrQMD has been applied to heavy ion collisions in RHIC Beam Energy Scan range $sqrt{s_{rm NN}}=7.7dots 200$ GeV. Based on comparison to available experimental data it was estimated that an effective value of shear viscosity over entropy density ratio $eta/s$ in hydrodynamic stage has to decrease from $eta/s=0.2$ to $0.08$ as collision energy increases from $sqrt{s_{rm NN}} = 7.7$ to $39$ GeV, and to stay at $eta/s=0.08$ for $39lesqrt{s_{rm NN}}le200$ GeV. In this work we show how an equation of state with first order phase transition affects the hydrodynamic evolution at those collision energies and changes the results of the model as compared to default scenario with a crossover type EoS from chiral model.
Based on transport equations we argue that the chiral dynamics in heavy-ion collisions at high collision energies effectively decouples from the thermal physics of the fireball. With full decoupling at LHC energies the chiral condensate relaxes to its vacuum expectation value on a much shorter time scale than the typical evolution time of the fluid dynamical fields and their fluctuations. In particular, the net-baryon density remains coupled to the bulk evolution at all collision energies. As the mass scales of the hadrons are controlled by the chiral condensate, it is reasonable to employ vacuum masses in the statistical description of the hadron production at the chemical freeze-out for high collision energies. We predict that at lower collision energies the coupling of the chiral condensate to the thermal medium gradually increases with consequences for the related hadronic masses. A new estimate for the location of the freeze-out curve takes these effects into account.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا