Do you want to publish a course? Click here

Higher-Order Nodal Points in Two Dimensions

139   0   0.0 ( 0 )
 Added by Weikang Wu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

A two-dimensional (2D) topological semimetal is characterized by the nodal points in its low-energy band structure. While the linear nodal points have been extensively studied, especially in the context of graphene, the realm beyond linear nodal points remains largely unexplored. Here, we explore the possibility of higher-order nodal points, i.e., points with higher-order energy dispersions, in 2D systems. We perform an exhaustive search over all 80 layer groups both with and without spin-orbit coupling (SOC), and reveal all possible higher-order nodal points. We show that they can be classified into two categories: the quadratic nodal point (QNP) and the cubic nodal point (CNP). All the 2D higher-order nodal points have twofold degeneracy, and the order of dispersion cannot be higher than three. QNPs only exist in the absence of SOC, whereas CNPs only exist in the presence of SOC. Particularly, the CNPs represent a new topological state not known before. We show that they feature nontrivial topological charges, leading to extensive topological edge bands. Our work completely settles the problem of higher-order nodal points, discovers novel topological states in 2D, and provides detailed guidance to realize these states. Possible material candidates and experimental signatures are discussed.



rate research

Read More

Triple nodal points are degeneracies of energy bands in momentum space at which three Hamiltonian eigenstates coalesce at a single eigenenergy. For spinless particles, the stability of a triple nodal point requires two ingredients: rotation symmetry of order three, four or six; combined with mirror or space-time-inversion symmetry. However, despite ample studies of their classification, robust boundary signatures of triple nodal points have until now remained elusive. In this work, we first show that pairs of triple nodal points in semimetals and metals can be characterized by Stiefel-Whitney and Euler monopole invariants, of which the first one is known to facilitate higher-order topology. Motivated by this observation, we then combine symmetry indicators for corner charges and for the Stiefel-Whitney invariant in two dimensions with the classification of triple nodal points for spinless systems in three dimensions. The result is a complete higher-order bulk-boundary correspondence, where pairs of triple nodal points are characterized by fractional jumps of the hinge charge. We present minimal models of the various species of triple nodal points carrying higher-order topology, and illustrate the derived correspondence on Sc$_3$AlC which becomes a higher-order triple-point metal in applied strain. The generalization to spinful systems, in particular to the WC-type triple-point material class, is briefly outlined.
Nodal lines, as one-dimensional band degeneracies in momentum space, usually feature a linear energy splitting. Here, we propose the concept of magnetic higher-order nodal lines, which are nodal lines with higher-order energy splitting and realized in magnetic systems with broken time reversal symmetry. We provide sufficient symmetry conditions for stabilizing magnetic quadratic and cubic nodal lines, based on which concrete lattice models are constructed to demonstrate their existence. Unlike its counterpart in nonmagnetic systems, the magnetic quadratic nodal line can exist as the only band degeneracy at the Fermi level. We show that these nodal lines can be accompanied by torus surface states, which form a surface band that span over the whole surface Brillouin zone. Under symmetry breaking, these magnetic nodal lines can be transformed into a variety of interesting topological states, such as three-dimensional quantum anomalous Hall insulator, multiple linear nodal lines, and magnetic triple-Weyl semimetal. The three-dimensional quantum anomalous Hall insulator features a Hall conductivity $sigma_{xy}$ quantized in unit of $e^2/(hd)$ where $d$ is the lattice constant normal to the $x$-$y$ plane. Our work reveals previously unknown topological states, and offers guidance to search for them in realistic material systems.
Magnetism in recently discovered van der Waals materials has opened new avenues in the study of fundamental spin interactions in truly two-dimensions. A paramount question is what effect higher-order interactions beyond bilinear Heisenberg exchange have on the magnetic properties of few-atom thick compounds. Here we demonstrate that biquadratic exchange interactions, which is the simplest and most natural form of non-Heisenberg coupling, assume a key role in the magnetic properties of layered magnets. Using a combination of nonperturbative analytical techniques, non-collinear first-principles methods and classical Monte Carlo calculations that incorporate higher-order exchange, we show that several quantities including magnetic anisotropies, spin-wave gaps and topological spin-excitations are intrinsically renormalized leading to further thermal stability of the layers. We develop a spin Hamiltonian that also contains antisymmetric exchanges (e.g. Dzyaloshinskii-Moriya interactions) to successfully rationalize numerous observations currently under debate, such as the non-Ising character of several compounds despite a strong magnetic anisotropy, peculiarities of the magnon spectrum of 2D magnets, and the discrepancy between measured and calculated Curie temperatures. Our results lay the foundation of a universal higher-order exchange theory for novel 2D magnetic design strategies.
We identify four types of higher-order topological semimetals or nodal superconductors (HOTS), hosting (i) flat zero-energy Fermi arcs at crystal hinges, (ii) flat zero-energy hinge arcs coexisting with surface Dirac cones, (iii) chiral or helical hinge modes, or (iv) flat zero-energy hinge arcs connecting nodes only at finite momentum. Bulk-boundary correspondence relates the hinge states to the bulk topology protecting the nodal point or loop. We classify all HOTS for all tenfold-way classes with an order-two crystalline (anti-)symmetry, such as mirror, twofold rotation, or inversion.
Conventional topological insulators support boundary states that have one dimension lower than the bulk system that hosts them, and these states are topologically protected due to quantized bulk dipole moments. Recently, higher-order topological insulators have been proposed as a way of realizing topological states that are two or more dimensions lower than the bulk, due to the quantization of bulk quadrupole or octupole moments. However, all these proposals as well as experimental realizations have been restricted to real-space dimensions. Here we construct photonic higher-order topological insulators (PHOTI) in synthetic dimensions. We show the emergence of a quadrupole PHOTI supporting topologically protected corner modes in an array of modulated photonic molecules with a synthetic frequency dimension, where each photonic molecule comprises two coupled rings. By changing the phase difference of the modulation between adjacently coupled photonic molecules, we predict a dynamical topological phase transition in the PHOTI. Furthermore, we show that the concept of synthetic dimensions can be exploited to realize even higher-order multipole moments such as a 4th order hexadecapole (16-pole) insulator, supporting 0D corner modes in a 4D hypercubic synthetic lattice that cannot be realized in real-space lattices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا