Do you want to publish a course? Click here

Recursive input and state estimation: A general framework for learning from time series with missing data

99   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Time series with missing data are signals encountered in important settings for machine learning. Some of the most successful prior approaches for modeling such time series are based on recurrent neural networks that transform the input and previous state to account for the missing observations, and then treat the transformed signal in a standard manner. In this paper, we introduce a single unifying framework, Recursive Input and State Estimation (RISE), for this general approach and reformulate existing models as specific instances of this framework. We then explore additional novel variations within the RISE framework to improve the performance of any instance. We exploit representation learning techniques to learn latent representations of the signals used by RISE instances. We discuss and develop various encoding techniques to learn latent signal representations. We benchmark instances of the framework with various encoding functions on three data imputation datasets, observing that RISE instances always benefit from encoders that learn representations for numerical values from the digits into which they can be decomposed.



rate research

Read More

Real-world clinical time series data sets exhibit a high prevalence of missing values. Hence, there is an increasing interest in missing data imputation. Traditional statistical approaches impose constraints on the data-generating process and decouple imputation from prediction. Recent works propose recurrent neural network based approaches for missing data imputation and prediction with time series data. However, they generate deterministic outputs and neglect the inherent uncertainty. In this work, we introduce a unified Bayesian recurrent framework for simultaneous imputation and prediction on time series data sets. We evaluate our approach on two real-world mortality prediction tasks using the MIMIC-III and PhysioNet benchmark datasets. We demonstrate strong performance gains over state-of-the-art (SOTA) methods, and provide strategies to use the resulting probability distributions to better assess reliability of the imputations and predictions.
We propose a score-based DAG structure learning method for time-series data that captures linear, nonlinear, lagged and instantaneous relations among variables while ensuring acyclicity throughout the entire graph. The proposed method extends nonparametric NOTEARS, a recent continuous optimization approach for learning nonparametric instantaneous DAGs. The proposed method is faster than constraint-based methods using nonlinear conditional independence tests. We also promote the use of optimization constraints to incorporate prior knowledge into the structure learning process. A broad set of experiments with simulated data demonstrates that the proposed method discovers better DAG structures than several recent comparison methods. We also evaluate the proposed method on complex real-world data acquired from NHL ice hockey games containing a mixture of continuous and discrete variables. The code is available at https://github.com/xiangyu-sun-789/NTS-NOTEARS/.
Complex systems, such as airplanes, cars, or financial markets, produce multivariate time series data consisting of a large number of system measurements over a period of time. Such data can be interpreted as a sequence of states, where each state represents a prototype of system behavior. An important problem in this domain is to identify repeated sequences of states, known as motifs. Such motifs correspond to complex behaviors that capture common sequences of state transitions. For example, in automotive data, a motif of making a turn might manifest as a sequence of states: slowing down, turning the wheel, and then speeding back up. However, discovering these motifs is challenging, because the individual states and state assignments are unknown, have different durations, and need to be jointly learned from the noisy time series. Here we develop motif-aware state assignment (MASA), a method to discover common motifs in noisy time series data and leverage those motifs to more robustly assign states to measurements. We formulate the problem of motif discovery as a large optimization problem, which we solve using an expectation-maximization type approach. MASA performs well in the presence of noise in the input data and is scalable to very large datasets. Experiments on synthetic data show that MASA outperforms state-of-the-art baselines by up to 38.2%, and two case studies demonstrate how our approach discovers insightful motifs in the presence of noise in real-world time series data.
Deep learning performs remarkably well on many time series analysis tasks recently. The superior performance of deep neural networks relies heavily on a large number of training data to avoid overfitting. However, the labeled data of many real-world time series applications may be limited such as classification in medical time series and anomaly detection in AIOps. As an effective way to enhance the size and quality of the training data, data augmentation is crucial to the successful application of deep learning models on time series data. In this paper, we systematically review different data augmentation methods for time series. We propose a taxonomy for the reviewed methods, and then provide a structured review for these methods by highlighting their strengths and limitations. We also empirically compare different data augmentation methods for different tasks including time series anomaly detection, classification, and forecasting. Finally, we discuss and highlight five future directions to provide useful research guidance.
Multimodal learning has achieved great successes in many scenarios. Compared with unimodal learning, it can effectively combine the information from different modalities to improve the performance of learning tasks. In reality, the multimodal data may have missing modalities due to various reasons, such as sensor failure and data transmission error. In previous works, the information of the modality-missing data has not been well exploited. To address this problem, we propose an efficient approach based on maximum likelihood estimation to incorporate the knowledge in the modality-missing data. Specifically, we design a likelihood function to characterize the conditional distribution of the modality-complete data and the modality-missing data, which is theoretically optimal. Moreover, we develop a generalized form of the softmax function to effectively implement maximum likelihood estimation in an end-to-end manner. Such training strategy guarantees the computability of our algorithm capably. Finally, we conduct a series of experiments on real-world multimodal datasets. Our results demonstrate the effectiveness of the proposed approach, even when 95% of the training data has missing modality.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا