No Arabic abstract
We are concerned with the dependence of the lowest positive eigenvalue of the Dirac operator on the geometry of rectangles, subject to infinite-mass boundary conditions. It is shown that the square is the global minimiser both under the area or perimeter constraints. Contrary to well-known non-relativistic analogues, the present spectral problem does not admit explicit solutions. Our approach is based on a variational re-formulation, symmetries of the rectangles and a trick passing through a non-convex minimisation problem. We leave as an open problem whether the square is the only minimiser of these spectral-optimisation problems.
We investigate spectral features of the Dirac operator with infinite mass boundary conditions in a smooth bounded domain of $mathbb{R}^2$. Motivated by spectral geometric inequalities, we prove a non-linear variational formulation to characterize its principal eigenvalue. This characterization turns out to be very robust and allows for a simple proof of a Szego type inequality as well as a new reformulation of a Faber-Krahn type inequality for this operator. The paper is complemented with strong numerical evidences supporting the existence of a Faber-Krahn type inequality.
In this note the two dimensional Dirac operator $A_eta$ with an electrostatic $delta$-shell interaction of strength $etainmathbb R$ supported on a straight line is studied. We observe a spectral transition in the sense that for the critical interaction strengths $eta=pm 2$ the continuous spectrum of $A_eta$ inside the spectral gap of the free Dirac operator $A_0$ collapses abruptly to a single point.
We make a spectral analysis of the massive Dirac operator in a tubular neighborhood of an unbounded planar curve,subject to infinite mass boundary conditions. Under general assumptions on the curvature, we locate the essential spectrum and derive an effective Hamiltonian on the base curve which approximates the original operator in the thin-strip limit. We also investigate the existence of bound states in the non-relativistic limit and give a geometric quantitative condition for the bound states to exist.
We prove the absence of eigenvaues of the three-dimensional Dirac operator with non-Hermitian potentials in unbounded regions of the complex plane under smallness conditions on the potentials in Lebesgue spaces. Our sufficient conditions are quantitative and easily checkable.
This paper deals with the massive three-dimensional Dirac operator coupled with a Lorentz scalar shell interaction supported on a compact smooth surface. The rigorous definition of the operator involves suitable transmission conditions along the surface. After showing the self-adjointness of the resulting operator we switch to the investigation of its spectral properties, in particular, to the existence and non-existence of eigenvalues. In the case of an attractive coupling, we study the eigenvalue asymptotics as the mass becomes large and show that the behavior of the individual eigenvalues and their total number are governed by an effective Schrodinger operator on the boundary with an external Yang-Mills potential and a curvature-induced potential.