Do you want to publish a course? Click here

Cooperative Learning of Zero-Shot Machine Reading Comprehension

249   0   0.0 ( 0 )
 Added by Hongyin Luo
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Pretrained language models have significantly improved the performance of down-stream language understanding tasks, including extractive question answering, by providing high-quality contextualized word embeddings. However, learning question answering models still need large-scaled data annotation in specific domains. In this work, we propose a cooperative, self-play learning framework, REGEX, for question generation and answering. REGEX is built upon a masked answer extraction task with an interactive learning environment containing an answer entity REcognizer, a question Generator, and an answer EXtractor. Given a passage with a masked entity, the generator generates a question around the entity, and the extractor is trained to extract the masked entity with the generated question and raw texts. The framework allows the training of question generation and answering models on any text corpora without annotation. We further leverage a reinforcement learning technique to reward generating high-quality questions and to improve the answer extraction models performance. Experiment results show that REGEX outperforms the state-of-the-art (SOTA) pretrained language models and zero-shot approaches on standard question-answering benchmarks, and yields the new SOTA performance under the zero-shot setting.



rate research

Read More

Achieving human-level performance on some of Machine Reading Comprehension (MRC) datasets is no longer challenging with the help of powerful Pre-trained Language Models (PLMs). However, the internal mechanism of these artifacts still remains unclear, placing an obstacle for further understanding these models. This paper focuses on conducting a series of analytical experiments to examine the relations between the multi-head self-attention and the final performance, trying to analyze the potential explainability in PLM-based MRC models. We perform quantitative analyses on SQuAD (English) and CMRC 2018 (Chinese), two span-extraction MRC datasets, on top of BERT, ALBERT, and ELECTRA in various aspects. We discover that {em passage-to-question} and {em passage understanding} attentions are the most important ones, showing strong correlations to the final performance than other parts. Through visualizations and case studies, we also observe several general findings on the attention maps, which could be helpful to understand how these models solve the questions.
We propose a simple method to generate multilingual question and answer pairs on a large scale through the use of a single generative model. These synthetic samples can be used to improve the zero-shot performance of multilingual QA models on target languages. Our proposed multi-task training of the generative model only requires the labeled training samples in English, thus removing the need for such samples in the target languages, making it applicable to far more languages than those with labeled data. Human evaluations indicate the majority of such samples are grammatically correct and sensible. Experimental results show our proposed approach can achieve large gains on the XQuAD dataset, reducing the gap between zero-shot and supervised performance of smaller QA models on various languages.
Multi-choice Machine Reading Comprehension (MRC) as a challenge requires model to select the most appropriate answer from a set of candidates given passage and question. Most of the existing researches focus on the modeling of the task datasets without explicitly referring to external fine-grained knowledge sources, which is supposed to greatly make up the deficiency of the given passage. Thus we propose a novel reference-based knowledge enhancement model called Reference Knowledgeable Network (RekNet), which refines critical information from the passage and quote explicit knowledge in necessity. In detail, RekNet refines fine-grained critical information and defines it as Reference Span, then quotes explicit knowledge quadruples by the co-occurrence information of Reference Span and candidates. The proposed RekNet is evaluated on three multi-choice MRC benchmarks: RACE, DREAM and Cosmos QA, which shows consistent and remarkable performance improvement with observable statistical significance level over strong baselines.
292 - Fu Sun , Linyang Li , Xipeng Qiu 2018
Machine reading comprehension with unanswerable questions is a new challenging task for natural language processing. A key subtask is to reliably predict whether the question is unanswerable. In this paper, we propose a unified model, called U-Net, with three important components: answer pointer, no-answer pointer, and answer verifier. We introduce a universal node and thus process the question and its context passage as a single contiguous sequence of tokens. The universal node encodes the fused information from both the question and passage, and plays an important role to predict whether the question is answerable and also greatly improves the conciseness of the U-Net. Different from the state-of-art pipeline models, U-Net can be learned in an end-to-end fashion. The experimental results on the SQuAD 2.0 dataset show that U-Net can effectively predict the unanswerability of questions and achieves an F1 score of 71.7 on SQuAD 2.0.
Cross-lingual Machine Reading Comprehension (CLMRC) remains a challenging problem due to the lack of large-scale annotated datasets in low-source languages, such as Arabic, Hindi, and Vietnamese. Many previous approaches use translation data by translating from a rich-source language, such as English, to low-source languages as auxiliary supervision. However, how to effectively leverage translation data and reduce the impact of noise introduced by translation remains onerous. In this paper, we tackle this challenge and enhance the cross-lingual transferring performance by a novel augmentation approach named Language Branch Machine Reading Comprehension (LBMRC). A language branch is a group of passages in one single language paired with questions in all target languages. We train multiple machine reading comprehension (MRC) models proficient in individual language based on LBMRC. Then, we devise a multilingual distillation approach to amalgamate knowledge from multiple language branch models to a single model for all target languages. Combining the LBMRC and multilingual distillation can be more robust to the data noises, therefore, improving the models cross-lingual ability. Meanwhile, the produced single multilingual model is applicable to all target languages, which saves the cost of training, inference, and maintenance for multiple models. Extensive experiments on two CLMRC benchmarks clearly show the effectiveness of our proposed method.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا