Do you want to publish a course? Click here

Analyzing the Influence of Dataset Composition for Emotion Recognition

124   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recognizing emotions from text in multimodal architectures has yielded promising results, surpassing video and audio modalities under certain circumstances. However, the method by which multimodal data is collected can be significant for recognizing emotional features in language. In this paper, we address the influence data collection methodology has on two multimodal emotion recognition datasets, the IEMOCAP dataset and the OMG-Emotion Behavior dataset, by analyzing textual dataset compositions and emotion recognition accuracy. Experiments with the full IEMOCAP dataset indicate that the composition negatively influences generalization performance when compared to the OMG-Emotion Behavior dataset. We conclude by discussing the impact this may have on HRI experiments.



rate research

Read More

In our everyday lives and social interactions we often try to perceive the emotional states of people. There has been a lot of research in providing machines with a similar capacity of recognizing emotions. From a computer vision perspective, most of the previous efforts have been focusing in analyzing the facial expressions and, in some cases, also the body pose. Some of these methods work remarkably well in specific settings. However, their performance is limited in natural, unconstrained environments. Psychological studies show that the scene context, in addition to facial expression and body pose, provides important information to our perception of peoples emotions. However, the processing of the context for automatic emotion recognition has not been explored in depth, partly due to the lack of proper data. In this paper we present EMOTIC, a dataset of images of people in a diverse set of natural situations, annotated with their apparent emotion. The EMOTIC dataset combines two different types of emotion representation: (1) a set of 26 discrete categories, and (2) the continuous dimensions Valence, Arousal, and Dominance. We also present a detailed statistical and algorithmic analysis of the dataset along with annotators agreement analysis. Using the EMOTIC dataset we train different CNN models for emotion recognition, combining the information of the bounding box containing the person with the contextual information extracted from the scene. Our results show how scene context provides important information to automatically recognize emotional states and motivate further research in this direction. Dataset and code is open-sourced and available at: https://github.com/rkosti/emotic and link for the peer-reviewed published article: https://ieeexplore.ieee.org/document/8713881
Speech emotion recognition is a vital contributor to the next generation of human-computer interaction (HCI). However, current existing small-scale databases have limited the development of related research. In this paper, we present LSSED, a challenging large-scale english speech emotion dataset, which has data collected from 820 subjects to simulate real-world distribution. In addition, we release some pre-trained models based on LSSED, which can not only promote the development of speech emotion recognition, but can also be transferred to related downstream tasks such as mental health analysis where data is extremely difficult to collect. Finally, our experiments show the necessity of large-scale datasets and the effectiveness of pre-trained models. The dateset will be released on https://github.com/tobefans/LSSED.
Many mobile applications and virtual conversational agents now aim to recognize and adapt to emotions. To enable this, data are transmitted from users devices and stored on central servers. Yet, these data contain sensitive information that could be used by mobile applications without users consent or, maliciously, by an eavesdropping adversary. In this work, we show how multimodal representations trained for a primary task, here emotion recognition, can unintentionally leak demographic information, which could override a selected opt-out option by the user. We analyze how this leakage differs in representations obtained from textual, acoustic, and multimodal data. We use an adversarial learning paradigm to unlearn the private information present in a representation and investigate the effect of varying the strength of the adversarial component on the primary task and on the privacy metric, defined here as the inability of an attacker to predict specific demographic information. We evaluate this paradigm on multiple datasets and show that we can improve the privacy metric while not significantly impacting the performance on the primary task. To the best of our knowledge, this is the first work to analyze how the privacy metric differs across modalities and how multiple privacy concerns can be tackled while still maintaining performance on emotion recognition.
We examine the use of linear and non-linear dimensionality reduction algorithms for extracting low-rank feature representations for speech emotion recognition. Two feature sets are used, one based on low-level descriptors and their aggregations (IS10) and one modeling recurrence dynamics of speech (RQA), as well as their fusion. We report speech emotion recognition (SER) results for learned representations on two databases using different classification methods. Classification with low-dimensional representations yields performance improvement in a variety of settings. This indicates that dimensionality reduction is an effective way to combat the curse of dimensionality for SER. Visualization of features in two dimensions provides insight into discriminatory abilities of reduced feature sets.
163 - Jing Han , Zixing Zhang , Zhao Ren 2019
Despite remarkable advances in emotion recognition, they are severely restrained from either the essentially limited property of the employed single modality, or the synchronous presence of all involved multiple modalities. Motivated by this, we propose a novel crossmodal emotion embedding framework called EmoBed, which aims to leverage the knowledge from other auxiliary modalities to improve the performance of an emotion recognition system at hand. The framework generally includes two main learning components, i. e., joint multimodal training and crossmodal training. Both of them tend to explore the underlying semantic emotion information but with a shared recognition network or with a shared emotion embedding space, respectively. In doing this, the enhanced system trained with this approach can efficiently make use of the complementary information from other modalities. Nevertheless, the presence of these auxiliary modalities is not demanded during inference. To empirically investigate the effectiveness and robustness of the proposed framework, we perform extensive experiments on the two benchmark databases RECOLA and OMG-Emotion for the tasks of dimensional emotion regression and categorical emotion classification, respectively. The obtained results show that the proposed framework significantly outperforms related baselines in monomodal inference, and are also competitive or superior to the recently reported systems, which emphasises the importance of the proposed crossmodal learning for emotion recognition.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا