Do you want to publish a course? Click here

Covalent 2D Cr$_2$Te$_3$ ferromagnet

58   0   0.0 ( 0 )
 Added by Mengying Bian
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

To broaden the scope of van der Waals 2D magnets, we report the synthesis and magnetism of covalent 2D magnetic Cr$_2$Te$_3$ with a thickness down to one-unit-cell. The 2D Cr$_2$Te$_3$ crystals exhibit robust ferromagnetism with a Curie temperature of 180 K, a large perpendicular anisotropy of 7*105 J m-3, and a high coercivity of ~ 4.6 kG at 20 K. First-principles calculations further show a transition from canted to collinear ferromagnetism, a transition from perpendicular to in-plane anisotropy, and emergent half-metallic behavior in atomically-thin Cr$_2$Te$_3$, suggesting its potential application for injecting carriers with high spin polarization into spintronic devices.

rate research

Read More

We implement the molecular beam epitaxy method to embed the black-phosphorus-like bismuth nanosheets into the bulk ferromagnet Cr$_2$Te$_3$. As a typical surfactant, bismuth lowers the surface tensions and mediates the layer-by-layer growth of Cr$_2$Te$_3$. Meanwhile, the bismuth atoms precipitate into black-phosphorus-like nanosheets with the lateral size of several tens of nanometers. In Cr$_2$Te$_3$ embedded with Bi-nanosheets, we observe simultaneously a large topological Hall effect together with the magnetic susceptibility plateau and magnetoresistivity anomaly. As a control experiment, none of these signals is observed in the pristine Cr$_2$Te$_3$ samples. Therefore, the Bi-nanosheets serve as seeds of topological Hall effect induced by non-coplanar magnetic textures planted into Cr$_2$Te$_3$. Our experiments demonstrate a new method to generates a large topological Hall effect by planting strong spin-orbit couplings into the traditional ferromagnet, which may have potential applications in spintronics.
Electrical control of magnetism of a ferromagnetic semiconductor offers exciting prospects for future spintronic devices for processing and storing information. Here, we report observation of electrically modulated magnetic phase transition and magnetic anisotropy in thin crystal of Cr$_2$Ge$_2$Te$_6$ (CGT), a layered ferromagnetic semiconductor. We show that heavily electron-doped ($sim$ $10^{14}$ cm$^{-2}$) CGT in an electric double-layer transistor device is found to exhibit hysteresis in magnetoresistance (MR), a clear signature of ferromagnetism, at temperatures up to above 200 K, which is significantly higher than the known Curie temperature of 61 K for an undoped material. Additionally, angle-dependent MR measurements reveal that the magnetic easy axis of this new ground state lies within the layer plane in stark contrast to the case of undoped CGT, whose easy axis points in the out-of-plane direction. We propose that significant doping promotes double-exchange mechanism mediated by free carriers, prevailing over the superexchange mechanism in the insulating state. Our findings highlight that electrostatic gating of this class of materials allows not only charge flow switching but also magnetic phase switching, evidencing their potential for spintronics applications.
Here we report on Landau level spectroscopy in magnetic fields up to 34 T performed on a thin film of topological insulator Bi$_2$Te$_3$ epitaxially grown on a BaF$_2$ substrate. The observed response is consistent with the picture of a direct-gap semiconductor in which charge carriers closely resemble massive Dirac particles. The fundamental band gap reaches $E_g=(175pm 5)$~meV at low temperatures and it is not located on the trigonal axis, thus displaying either six or twelvefold valley degeneracy. Notably, our magneto-optical data do not indicate any band inversion. This suggests that the fundamental band gap is relatively distant from the $Gamma$ point where profound inversion exists andgives rise to relativistic-like surface states of Bi$_2$Te$_3$.
Two-dimensional (2D) magnetic materials with strong magnetostriction, like Cr$_2$Ge$_2$Te$_6$ (CGT), provide opportunities for tuning their magnetic state with potential applications in spintronic and magneto-mechanical devices. However, realizing this potential requires understanding their mechanical properties, such as the Youngs modulus, and the ability to controllably strain the magnets and monitor their ferromagnetic Curie temperature $T_{rm C}$ on a device level. In this work, we suspend thin CGT layers to form nanomechanical membrane resonators. We then probe the mechanical and magnetic properties of CGT as a function of temperature and strain by static and dynamic nanomechanical methods. Pronounced signatures of magneto-elastic coupling are observed in the temperature-dependent resonance frequency of these membranes at the $T_{rm C}$. We further utilize CGT in heterostructures with thin WSe$_2$ and FePS$_3$ layers to control the strain in CGT flakes and quantitatively probe the transition temperatures of all materials involved. In addition, an enhancement of $T_{rm C}$ by $2.5pm0.6$ K in CGT is realized by electrostatic force straining the heterostructure of $0.016%$ in the absence of an external magnetic field. Nanomechanical strain thus offers a compelling degree of freedom to probe and control magnetic phase transitions in 2D layered ferromagnets and heterostructures.
160 - M. Suzuki , B. Gao , G. Shibata 2021
The van der Waals ferromagnet Cr$_2$Ge$_2$Te$_6$ (CGT) has a two-dimensional crystal structure where each layer is stacked through van der Waals force. We have investigated the nature of the ferromagnetism and the weak perpendicular magnetic anisotropy (PMA) of CGT by means of X-ray absorption spectroscopy and X-ray magnetic circular dichroism (XMCD) studies of CGT single crystals. The XMCD spectra at the Cr $L_{2,3}$ edge for different magnetic field directions were analyzed on the basis of the cluster-model multiplet calculation. The Cr valence is confirmed to be 3+ and the orbital magnetic moment is found to be nearly quenched, as expected for the high-spin $t_{2g}$$^3$ configuration of the Cr$^{3+}$ ion. A large ($sim 0.2$ eV) trigonal crystal-field splitting of the $t_{2g}$ level caused by the distortion of the CrTe$_6$ octahedron has been revealed, while the single-ion anisotropy (SIA) of the Cr atom is found to have a sign {it opposite} to the observed PMA and too weak compared to the reported anisotropy energy. The present result suggests that anisotropic exchange coupling between the Cr atoms through the ligand Te $5p$ orbitals having strong spin-orbit coupling has to be invoked to explain the weak PMA of CGT, as in the case of the strong PMA of CrI$_3$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا