Do you want to publish a course? Click here

Tails: Chasing Comets with the Zwicky Transient Facility and Deep Learning

74   0   0.0 ( 0 )
 Added by Dmitry Duev
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present Tails, an open-source deep-learning framework for the identification and localization of comets in the image data of the Zwicky Transient Facility (ZTF), a robotic optical time-domain survey currently in operation at the Palomar Observatory in California, USA. Tails employs a custom EfficientDet-based architecture and is capable of finding comets in single images in near real time, rather than requiring multiple epochs as with traditional methods. The system achieves state-of-the-art performance with 99% recall, 0.01% false positive rate, and 1-2 pixel root mean square error in the predicted position. We report the initial results of the Tails efficiency evaluation in a production setting on the data of the ZTF Twilight survey, including the first AI-assisted discovery of a comet (C/2020 T2) and the recovery of a comet (P/2016 J3 = P/2021 A3).



rate research

Read More

We present DeepStreaks, a convolutional-neural-network, deep-learning system designed to efficiently identify streaking fast-moving near-Earth objects that are detected in the data of the Zwicky Transient Facility (ZTF), a wide-field, time-domain survey using a dedicated 47 sq. deg camera attached to the Samuel Oschin 48-inch Telescope at the Palomar Observatory in California, United States. The system demonstrates a 96-98% true positive rate, depending on the night, while keeping the false positive rate below 1%. The sensitivity of DeepStreaks is quantified by the performance on the test data sets as well as using known near-Earth objects observed by ZTF. The system is deployed and adapted for usage within the ZTF Solar-System framework and has significantly reduced human involvement in the streak identification process, from several hours to typically under 10 minutes per day.
Efficient automated detection of flux-transient, reoccurring flux-variable, and moving objects is increasingly important for large-scale astronomical surveys. We present braai, a convolutional-neural-network, deep-learning real/bogus classifier designed to separate genuine astrophysical events and objects from false positive, or bogus, detections in the data of the Zwicky Transient Facility (ZTF), a new robotic time-domain survey currently in operation at the Palomar Observatory in California, USA. Braai demonstrates a state-of-the-art performance as quantified by its low false negative and false positive rates. We describe the open-source software tools used internally at Caltech to archive and access ZTFs alerts and light curves (Kowalski), and to label the data (Zwickyverse). We also report the initial results of the classifier deployment on the Edge Tensor Processing Units (TPUs) that show comparable performance in terms of accuracy, but in a much more (cost-) efficient manner, which has significant implications for current and future surveys.
The Zwicky Transient Facility (ZTF), a public-private enterprise, is a new time domain survey employing a dedicated camera on the Palomar 48-inch Schmidt telescope with a 47 deg$^2$ field of view and 8 second readout time. It is well positioned in the development of time domain astronomy, offering operations at 10% of the scale and style of the Large Synoptic Survey Telescope (LSST) with a single 1-m class survey telescope. The public surveys will cover the observable northern sky every three nights in g and r filters and the visible Galactic plane every night in g and r. Alerts generated by these surveys are sent in real time to brokers. A consortium of universities which provided funding (partnership) are undertaking several boutique surveys. The combination of these surveys producing one million alerts per night allows for exploration of transient and variable astrophysical phenomena brighter than r $sim$ 20.5 on timescales of minutes to years. We describe the primary science objectives driving ZTF including the physics of supernovae and relativistic explosions, multi-messenger astrophysics, supernova cosmology, active galactic nuclei and tidal disruption events, stellar variability, and Solar System objects.
We present a novel algorithm for scheduling the observations of time-domain imaging surveys. Our Integer Linear Programming approach optimizes an observing plan for an entire night by assigning targets to temporal blocks, enabling strict control of the number of exposures obtained per field and minimizing filter changes. A subsequent optimization step minimizes slew times between each observation. Our optimization metric self-consistently weights contributions from time-varying airmass, seeing, and sky brightness to maximize the transient discovery rate. We describe the implementation of this algorithm on the surveys of the Zwicky Transient Facility and present its on-sky performance.
364 - Richard Dekany 2020
The Zwicky Transient Facility (ZTF) Observing System (OS) is the data collector for the ZTF project to study astrophysical phenomena in the time domain. ZTF OS is based upon the 48-inch aperture Schmidt-type design Samuel Oschin Telescope at the Palomar Observatory in Southern California. It incorporates new telescope aspheric corrector optics, dome and telescope drives, a large-format exposure shutter, a flat-field illumination system, a robotic bandpass filter exchanger, and the key element: a new 47-square-degree, 600 megapixel cryogenic CCD mosaic science camera, along with supporting equipment. The OS collects and delivers digitized survey data to the ZTF Data System (DS). Here, we describe the ZTF OS design, optical implementation, delivered image quality, detector performance, and robotic survey efficiency.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا