Do you want to publish a course? Click here

DeepStreaks: identifying fast-moving objects in the Zwicky Transient Facility data with deep learning

360   0   0.0 ( 0 )
 Added by Dmitry Duev
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present DeepStreaks, a convolutional-neural-network, deep-learning system designed to efficiently identify streaking fast-moving near-Earth objects that are detected in the data of the Zwicky Transient Facility (ZTF), a wide-field, time-domain survey using a dedicated 47 sq. deg camera attached to the Samuel Oschin 48-inch Telescope at the Palomar Observatory in California, United States. The system demonstrates a 96-98% true positive rate, depending on the night, while keeping the false positive rate below 1%. The sensitivity of DeepStreaks is quantified by the performance on the test data sets as well as using known near-Earth objects observed by ZTF. The system is deployed and adapted for usage within the ZTF Solar-System framework and has significantly reduced human involvement in the streak identification process, from several hours to typically under 10 minutes per day.



rate research

Read More

We present Tails, an open-source deep-learning framework for the identification and localization of comets in the image data of the Zwicky Transient Facility (ZTF), a robotic optical time-domain survey currently in operation at the Palomar Observatory in California, USA. Tails employs a custom EfficientDet-based architecture and is capable of finding comets in single images in near real time, rather than requiring multiple epochs as with traditional methods. The system achieves state-of-the-art performance with 99% recall, 0.01% false positive rate, and 1-2 pixel root mean square error in the predicted position. We report the initial results of the Tails efficiency evaluation in a production setting on the data of the ZTF Twilight survey, including the first AI-assisted discovery of a comet (C/2020 T2) and the recovery of a comet (P/2016 J3 = P/2021 A3).
Efficient automated detection of flux-transient, reoccurring flux-variable, and moving objects is increasingly important for large-scale astronomical surveys. We present braai, a convolutional-neural-network, deep-learning real/bogus classifier designed to separate genuine astrophysical events and objects from false positive, or bogus, detections in the data of the Zwicky Transient Facility (ZTF), a new robotic time-domain survey currently in operation at the Palomar Observatory in California, USA. Braai demonstrates a state-of-the-art performance as quantified by its low false negative and false positive rates. We describe the open-source software tools used internally at Caltech to archive and access ZTFs alerts and light curves (Kowalski), and to label the data (Zwickyverse). We also report the initial results of the classifier deployment on the Edge Tensor Processing Units (TPUs) that show comparable performance in terms of accuracy, but in a much more (cost-) efficient manner, which has significant implications for current and future surveys.
The Zwicky Transient Facility (ZTF), a public-private enterprise, is a new time domain survey employing a dedicated camera on the Palomar 48-inch Schmidt telescope with a 47 deg$^2$ field of view and 8 second readout time. It is well positioned in the development of time domain astronomy, offering operations at 10% of the scale and style of the Large Synoptic Survey Telescope (LSST) with a single 1-m class survey telescope. The public surveys will cover the observable northern sky every three nights in g and r filters and the visible Galactic plane every night in g and r. Alerts generated by these surveys are sent in real time to brokers. A consortium of universities which provided funding (partnership) are undertaking several boutique surveys. The combination of these surveys producing one million alerts per night allows for exploration of transient and variable astrophysical phenomena brighter than r $sim$ 20.5 on timescales of minutes to years. We describe the primary science objectives driving ZTF including the physics of supernovae and relativistic explosions, multi-messenger astrophysics, supernova cosmology, active galactic nuclei and tidal disruption events, stellar variability, and Solar System objects.
The Zwicky Transient Facility (ZTF) is a new robotic time-domain survey currently in progress using the Palomar 48-inch Schmidt Telescope. ZTF uses a 47 square degree field with a 600 megapixel camera to scan the entire northern visible sky at rates of ~3760 square degrees/hour to median depths of g ~ 20.8 and r ~ 20.6 mag (AB, 5sigma in 30 sec). We describe the Science Data System that is housed at IPAC, Caltech. This comprises the data-processing pipelines, alert production system, data archive, and user interfaces for accessing and analyzing the products. The realtime pipeline employs a novel image-differencing algorithm, optimized for the detection of point source transient events. These events are vetted for reliability using a machine-learned classifier and combined with contextual information to generate data-rich alert packets. The packets become available for distribution typically within 13 minutes (95th percentile) of observation. Detected events are also linked to generate candidate moving-object tracks using a novel algorithm. Objects that move fast enough to streak in the individual exposures are also extracted and vetted. The reconstructed astrometric accuracy per science image with respect to Gaia is typically 45 to 85 milliarcsec. This is the RMS per axis on the sky for sources extracted with photometric S/N >= 10. The derived photometric precision (repeatability) at bright unsaturated fluxes varies between 8 and 25 millimag. Photometric calibration accuracy with respect to Pan-STARRS1 is generally better than 2%. The products support a broad range of scientific applications: fast and young supernovae, rare flux transients, variable stars, eclipsing binaries, variability from active galactic nuclei, counterparts to gravitational wave sources, a more complete census of Type Ia supernovae, and Solar System objects.
We present results from applying the SNAD anomaly detection pipeline to the third public data release of the Zwicky Transient Facility (ZTF DR3). The pipeline is composed of 3 stages: feature extraction, search of outliers with machine learning algorithms and anomaly identification with followup by human experts. Our analysis concentrates in three ZTF fields, comprising more than 2.25 million objects. A set of 4 automatic learning algorithms was used to identify 277 outliers, which were subsequently scrutinised by an expert. From these, 188 (68%) were found to be bogus light curves -- including effects from the image subtraction pipeline as well as overlapping between a star and a known asteroid, 66 (24%) were previously reported sources whereas 23 (8%) correspond to non-catalogued objects, with the two latter cases of potential scientific interest (e. g. 1 spectroscopically confirmed RS Canum Venaticorum star, 4 supernovae candidates, 1 red dwarf flare). Moreover, using results from the expert analysis, we were able to identify a simple bi-dimensional relation which can be used to aid filtering potentially bogus light curves in future studies. We provide a complete list of objects with potential scientific application so they can be further scrutinised by the community. These results confirm the importance of combining automatic machine learning algorithms with domain knowledge in the construction of recommendation systems for astronomy. Our code is publicly available at https://github.com/snad-space/zwad
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا