Do you want to publish a course? Click here

Unusual high-field metal in a Kondo insulator

333   0   0.0 ( 0 )
 Added by Lu Li
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Within condensed-matter systems, strong electronic interactions often lead to exotic quantum phases. A recent manifestation of this is the unexpected observation of magnetic quantum oscillations and metallic thermal transport, both properties of systems with Fermi surfaces of itinerant quasiparticles, in the Kondo insulators SmB6 and YbB$_{12}$. To understand these phenomena, it is informative to study their evolution as the energy gap of the Kondo-Insulator state is closed by a large magnetic field. We show here that both the quantum-oscillation frequency and the cyclotron mass display a strong field dependence in the resulting high-field metallic state in $_{12}$. By tracking the Fermi-surface area, we conclude that the same quasiparticle band gives rise to the quantum oscillations in both insulating and metallic states. These data are understood most simply using a two-fluid picture where unusual quasiparticles, contributing little or nothing to charge transport, coexist with conventional fermions. In the metallic state this leads to a heavy-fermion bad metal with negligible magnetoresistance, relatively high resistivity and a very large Kadowaki-Woods ratio, underlining the exotic nature of the fermion ensemble inhabiting $_{12}$.



rate research

Read More

We analyze the conduction bands of the one dimensional noble-metal chains that contain a Co magnetic impurity by means of ab initio calculations. We compare the results obtained for Cu and Ag pure chains, as well as O doped Cu, Ag and Au chains with those previously found for Au pure chains. We find similar results in the case of Cu and Au hosts, whereas for Ag chains a different behavior is obtained. Differences and similarities among the different systems are analyzed by comparing the electronic structure of the three noble-metal hosts. The d-orbitals of Cu chains at the Fermi level have the same symmetry as in the case of Au chains. These orbitals hybridize with the corresponding ones of the Co impurity, giving rise to the possibility of exhibiting a two-channel Kondo physics.
Kondo insulators are predicted to undergo an insulator-to-metal transition under applied magnetic field, yet the extremely high fields required to date have prohibited a comprehensive investigation of the nature of this transition. Here we show that Ce3Bi4Pd3 provides an ideal platform for this investigation, owing to the unusually small magnetic field of B ~ 11 T required to overcome its Kondo insulating gap. Above Bc, we find a magnetic field-induced Fermi liquid state whose characteristic energy scale T_FL collapses near Bc in a manner indicative of a magnetic field-tuned quantum critical point. A direct connection is established with the process of Kondo singlet formation, which yields a broad maximum in the magnetic susceptibility as a function of temperature in weak magnetic fields that evolves progressively into a sharper transition at Bc as T -> 0.
245 - S. Kettemann , E. R. Mucciolo , 2009
It is well-known that magnetic impurities can change the symmetry class of disordered metallic systems by breaking spin and time-reversal symmetry. At low temperature these symmetries can be restored by Kondo screening. It is also known that at the Anderson metal-insulator transition, wave functions develop multifractal fluctuations with power law correlations. Here, we consider the interplay of these two effects. We show that multifractal correlations open local pseudogaps at the Fermi energy at some random positions in space. When dilute magnetic impurities are at these locations, Kondo screening is strongly suppressed. We find that when the exchange coupling J is smaller than a certain value J*, the metal-insulator transition point extends to a critical region in the disorder strength parameter and to a band of critical states. The width of this critical region increases with a power of the concentration of magnetic impurities.
Long known to have thermodynamic properties at odds with its insulating electrical transport, SmB6 has been the subject of great debate as it is unclear whether its unusual properties are related to the bulk or novel metallic surface states. We have observed a bulk moment-screening effect in nominally pure and Gd-doped SmB6 via heat capacity, magnetization, and resistivity measurements, and show this new Kondo-impurity like effect provides an unexpected but intuitive explanation for metal-like phenomena stemming from the strongly interacting host system. This affords a coherent understanding for decades of mysteries in strongly-correlated insulators, reveals the expanded utility of techniques previously only utilized for metals, and presents the novel effect of even highly-dilute impurities in strongly correlated insulators.
204 - M. Zhu , J. Peng , T. Zou 2018
We present a new type of colossal magnetoresistance (CMR) arising from an anomalous collapse of the Mott insulating state via a modest magnetic field in a bilayer ruthenate, Ti-doped Ca$_3$Ru$_2$O$_7$. Such an insulator-metal transition is accompanied by changes in both lattice and magnetic structures. Our findings have important implications because a magnetic field usually stabilizes the insulating ground state in a Mott-Hubbard system, thus calling for a deeper theoretical study to reexamine the magnetic field tuning of Mott systems with magnetic and electronic instabilities and spin-lattice-charge coupling. This study further provides a model approach to search for CMR systems other than manganites, such as Mott insulators in the vicinity of the boundary between competing phases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا