Do you want to publish a course? Click here

Deep reinforcement learning for quantum Hamiltonian engineering

142   0   0.0 ( 0 )
 Added by Pai Peng
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Engineering desired Hamiltonian in quantum many-body systems is essential for applications such as quantum simulation, computation and sensing. Conventional quantum Hamiltonian engineering sequences are designed using human intuition based on perturbation theory, which may not describe the optimal solution and is unable to accommodate complex experimental imperfections. Here we numerically search for Hamiltonian engineering sequences using deep reinforcement learning (DRL) techniques and experimentally demonstrate that they outperform celebrated sequences on a solid-state nuclear magnetic resonance quantum simulator. As an example, we aim at decoupling strongly-interacting spin-1/2 systems. We train DRL agents in the presence of different experimental imperfections and verify robustness of the output sequences both in simulations and experiments. Surprisingly, many of the learned sequences exhibit a common pattern that had not been discovered before, to our knowledge, but has an meaningful analytical description. We can thus restrict the searching space based on this control pattern, allowing to search for longer sequences, ultimately leading to sequences that are robust against dominant imperfections in our experiments. Our results not only demonstrate a general method for quantum Hamiltonian engineering, but also highlight the importance of combining black-box artificial intelligence with understanding of physical system in order to realize experimentally feasible applications.



rate research

Read More

Machine learning (ML) has become an attractive tool in information processing, however few ML algorithms have been successfully applied in the quantum domain. We show here how classical reinforcement learning (RL) could be used as a tool for quantum state engineering (QSE). We employ a measurement based control for QSE where the action sequences are determined by the choice of the measurement basis and the reward through the fidelity of obtaining the target state. Our analysis clearly displays a learning feature in QSE, for example in preparing arbitrary two-qubit entangled states. It delivers successful action sequences, that generalise previously found human solutions from exact quantum dynamics. We provide a systematic algorithmic approach for using RL algorithms for quantum protocols that deal with non-trivial continuous state (parameter) space, and discuss on scaling of these approaches for preparation of arbitrarily large entangled (cluster) states.
Deep reinforcement learning has been recognized as an efficient technique to design optimal strategies for different complex systems without prior knowledge of the control landscape. To achieve a fast and precise control for quantum systems, we propose a novel deep reinforcement learning approach by constructing a curriculum consisting of a set of intermediate tasks defined by a fidelity threshold. Tasks among a curriculum can be statically determined using empirical knowledge or adaptively generated with the learning process. By transferring knowledge between two successive tasks and sequencing tasks according to their difficulties, the proposed curriculum-based deep reinforcement learning (CDRL) method enables the agent to focus on easy tasks in the early stage, then move onto difficult tasks, and eventually approaches the final task. Numerical simulations on closed quantum systems and open quantum systems demonstrate that the proposed method exhibits improved control performance for quantum systems and also provides an efficient way to identify optimal strategies with fewer control pulses.
The architecture of circuital quantum computers requires computing layers devoted to compiling high-level quantum algorithms into lower-level circuits of quantum gates. The general problem of quantum compiling is to approximate any unitary transformation that describes the quantum computation, as a sequence of elements selected from a finite base of universal quantum gates. The existence of an approximating sequence of one qubit quantum gates is guaranteed by the Solovay-Kitaev theorem, which implies sub-optimal algorithms to establish it explicitly. Since a unitary transformation may require significantly different gate sequences, depending on the base considered, such a problem is of great complexity and does not admit an efficient approximating algorithm. Therefore, traditional approaches are time-consuming tasks, unsuitable to be employed during quantum computation. We exploit the deep reinforcement learning method as an alternative strategy, which has a significantly different trade-off between search time and exploitation time. Deep reinforcement learning allows creating single-qubit operations in real time, after an arbitrary long training period during which a strategy for creating sequences to approximate unitary operators is built. The deep reinforcement learning based compiling method allows for fast computation times, which could in principle be exploited for real-time quantum compiling.
During compression of a water dimer calculated with high-precision first-principles methods, the trends of H-bond and O-H bond lengths show quantum effect of the electronic structure. We found that the H-bond length keeps decreasing, while the O-H bond length increases up to the stable point and decreases beyond it when the water dimer is further compressed. The remarkable properties are different from those observed in most previous researches which can be understood and extrapolated through classical simulation. The observations can be explained by the decrease in orbital overlap and change in the exchange repulsion interaction between water monomers. The dominant interaction between water monomers changes from electrostatic interaction to exchange repulsion at the turning point of the O-H bond length when the O...O distance is decreased. These findings highlight the quantum effect on the hydrogen bond in extreme conditions and play an important role in the recognition of the hydrogen bond structure and mechanism.
Recent advances in quantum computing have drawn considerable attention to building realistic application for and using quantum computers. However, designing a suitable quantum circuit architecture requires expert knowledge. For example, it is non-trivial to design a quantum gate sequence for generating a particular quantum state with as fewer gates as possible. We propose a quantum architecture search framework with the power of deep reinforcement learning (DRL) to address this challenge. In the proposed framework, the DRL agent can only access the Pauli-$X$, $Y$, $Z$ expectation values and a predefined set of quantum operations for learning the target quantum state, and is optimized by the advantage actor-critic (A2C) and proximal policy optimization (PPO) algorithms. We demonstrate a successful generation of quantum gate sequences for multi-qubit GHZ states without encoding any knowledge of quantum physics in the agent. The design of our framework is rather general and can be employed with other DRL architectures or optimization methods to study gate synthesis and compilation for many quantum states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا