Do you want to publish a course? Click here

Quantum Architecture Search via Deep Reinforcement Learning

104   0   0.0 ( 0 )
 Added by Samuel Yen-Chi Chen
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recent advances in quantum computing have drawn considerable attention to building realistic application for and using quantum computers. However, designing a suitable quantum circuit architecture requires expert knowledge. For example, it is non-trivial to design a quantum gate sequence for generating a particular quantum state with as fewer gates as possible. We propose a quantum architecture search framework with the power of deep reinforcement learning (DRL) to address this challenge. In the proposed framework, the DRL agent can only access the Pauli-$X$, $Y$, $Z$ expectation values and a predefined set of quantum operations for learning the target quantum state, and is optimized by the advantage actor-critic (A2C) and proximal policy optimization (PPO) algorithms. We demonstrate a successful generation of quantum gate sequences for multi-qubit GHZ states without encoding any knowledge of quantum physics in the agent. The design of our framework is rather general and can be employed with other DRL architectures or optimization methods to study gate synthesis and compilation for many quantum states.



rate research

Read More

The key approaches for machine learning, especially learning in unknown probabilistic environments are new representations and computation mechanisms. In this paper, a novel quantum reinforcement learning (QRL) method is proposed by combining quantum theory and reinforcement learning (RL). Inspired by the state superposition principle and quantum parallelism, a framework of value updating algorithm is introduced. The state (action) in traditional RL is identified as the eigen state (eigen action) in QRL. The state (action) set can be represented with a quantum superposition state and the eigen state (eigen action) can be obtained by randomly observing the simulated quantum state according to the collapse postulate of quantum measurement. The probability of the eigen action is determined by the probability amplitude, which is parallelly updated according to rewards. Some related characteristics of QRL such as convergence, optimality and balancing between exploration and exploitation are also analyzed, which shows that this approach makes a good tradeoff between exploration and exploitation using the probability amplitude and can speed up learning through the quantum parallelism. To evaluate the performance and practicability of QRL, several simulated experiments are given and the results demonstrate the effectiveness and superiority of QRL algorithm for some complex problems. The present work is also an effective exploration on the application of quantum computation to artificial intelligence.
We present a neural architecture search algorithm to construct compact reinforcement learning (RL) policies, by combining ENAS and ES in a highly scalable and intuitive way. By defining the combinatorial search space of NAS to be the set of different edge-partitionings (colorings) into same-weight classes, we represent compact architectures via efficient learned edge-partitionings. For several RL tasks, we manage to learn colorings translating to effective policies parameterized by as few as $17$ weight parameters, providing >90% compression over vanilla policies and 6x compression over state-of-the-art compact policies based on Toeplitz matrices, while still maintaining good reward. We believe that our work is one of the first attempts to propose a rigorous approach to training structured neural network architectures for RL problems that are of interest especially in mobile robotics with limited storage and computational resources.
Recent advance in classical reinforcement learning (RL) and quantum computation (QC) points to a promising direction of performing RL on a quantum computer. However, potential applications in quantum RL are limited by the number of qubits available in the modern quantum devices. Here we present two frameworks of deep quantum RL tasks using a gradient-free evolution optimization: First, we apply the amplitude encoding scheme to the Cart-Pole problem; Second, we propose a hybrid framework where the quantum RL agents are equipped with hybrid tensor network-variational quantum circuit (TN-VQC) architecture to handle inputs with dimensions exceeding the number of qubits. This allows us to perform quantum RL on the MiniGrid environment with 147-dimensional inputs. We demonstrate the quantum advantage of parameter saving using the amplitude encoding. The hybrid TN-VQC architecture provides a natural way to perform efficient compression of the input dimension, enabling further quantum RL applications on noisy intermediate-scale quantum devices.
In this paper, we study how to learn an appropriate lane changing strategy for autonomous vehicles by using deep reinforcement learning. We show that the reward of the system should consider the overall traffic efficiency instead of the travel efficiency of an individual vehicle. In summary, cooperation leads to a more harmonic and efficient traffic system rather than competition
119 - Li He , Liang Wang , Kaipeng Liu 2018
Sponsored search is an indispensable business model and a major revenue contributor of almost all the search engines. From the advertisers side, participating in ranking the search results by paying for the sponsored search advertisement to attract more awareness and purchase facilitates their commercial goal. From the users side, presenting personalized advertisement reflecting their propensity would make their online search experience more satisfactory. Sponsored search platforms rank the advertisements by a ranking function to determine the list of advertisements to show and the charging price for the advertisers. Hence, it is crucial to find a good ranking function which can simultaneously satisfy the platform, the users and the advertisers. Moreover, advertisements showing positions under different queries from different users may associate with advertisement candidates of different bid price distributions and click probability distributions, which requires the ranking functions to be optimized adaptively to the traffic characteristics. In this work, we proposed a generic framework to optimize the ranking functions by deep reinforcement learning methods. The framework is composed of two parts: an offline learning part which initializes the ranking functions by learning from a simulated advertising environment, allowing adequate exploration of the ranking function parameter space without hurting the performance of the commercial platform. An online learning part which further optimizes the ranking functions by adapting to the online data distribution. Experimental results on a large-scale sponsored search platform confirm the effectiveness of the proposed method.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا