Do you want to publish a course? Click here

Template-Free Try-on Image Synthesis via Semantic-guided Optimization

138   0   0.0 ( 0 )
 Added by Chieh-Yun Chen
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The virtual try-on task is so attractive that it has drawn considerable attention in the field of computer vision. However, presenting the three-dimensional (3D) physical characteristic (e.g., pleat and shadow) based on a 2D image is very challenging. Although there have been several previous studies on 2D-based virtual try-on work, most 1) required user-specified target poses that are not user-friendly and may not be the best for the target clothing, and 2) failed to address some problematic cases, including facial details, clothing wrinkles and body occlusions. To address these two challenges, in this paper, we propose an innovative template-free try-on image synthesis (TF-TIS) network. The TF-TIS first synthesizes the target pose according to the user-specified in-shop clothing. Afterward, given an in-shop clothing image, a user image, and a synthesized pose, we propose a novel model for synthesizing a human try-on image with the target clothing in the best fitting pose. The qualitative and quantitative experiments both indicate that the proposed TF-TIS outperforms the state-of-the-art methods, especially for difficult cases.



rate research

Read More

122 - Yi Wang , Lu Qi , Ying-Cong Chen 2021
In this paper, we present a novel approach to synthesize realistic images based on their semantic layouts. It hypothesizes that for objects with similar appearance, they share similar representation. Our method establishes dependencies between regions according to their appearance correlation, yielding both spatially variant and associated representations. Conditioning on these features, we propose a dynamic weighted network constructed by spatially conditional computation (with both convolution and normalization). More than preserving semantic distinctions, the given dynamic network strengthens semantic relevance, benefiting global structure and detail synthesis. We demonstrate that our method gives the compelling generation performance qualitatively and quantitatively with extensive experiments on benchmarks.
134 - Hao Tang , Xiaojuan Qi , Dan Xu 2020
We propose a novel Edge guided Generative Adversarial Network (EdgeGAN) for photo-realistic image synthesis from semantic layouts. Although considerable improvement has been achieved, the quality of synthesized images is far from satisfactory due to two largely unresolved challenges. First, the semantic labels do not provide detailed structural information, making it difficult to synthesize local details and structures. Second, the widely adopted CNN operations such as convolution, down-sampling and normalization usually cause spatial resolution loss and thus are unable to fully preserve the original semantic information, leading to semantically inconsistent results (e.g., missing small objects). To tackle the first challenge, we propose to use the edge as an intermediate representation which is further adopted to guide image generation via a proposed attention guided edge transfer module. Edge information is produced by a convolutional generator and introduces detailed structure information. Further, to preserve the semantic information, we design an effective module to selectively highlight class-dependent feature maps according to the original semantic layout. Extensive experiments on two challenging datasets show that the proposed EdgeGAN can generate significantly better results than state-of-the-art methods. The source code and trained models are available at https://github.com/Ha0Tang/EdgeGAN.
Example-guided image synthesis aims to synthesize an image from a semantic label map and an exemplary image indicating style. We use the term style in this problem to refer to implicit characteristics of images, for example: in portraits style includes gender, racial identity, age, hairstyle; in full body pictures it includes clothing; in street scenes, it refers to weather and time of day and such like. A semantic label map in these cases indicates facial expression, full body pose, or scene segmentation. We propose a solution to the example-guided image synthesis problem using conditional generative adversarial networks with style consistency. Our key contributions are (i) a novel style consistency discriminator to determine whether a pair of images are consistent in style; (ii) an adaptive semantic consistency loss; and (iii) a training data sampling strategy, for synthesizing style-consistent results to the exemplar.
Spatially-adaptive normalization (SPADE) is remarkably successful recently in conditional semantic image synthesis cite{park2019semantic}, which modulates the normalized activation with spatially-varying transformations learned from semantic layouts, to prevent the semantic information from being washed away. Despite its impressive performance, a more thorough understanding of the advantages inside the box is still highly demanded to help reduce the significant computation and parameter overhead introduced by this novel structure. In this paper, from a return-on-investment point of view, we conduct an in-depth analysis of the effectiveness of this spatially-adaptive normalization and observe that its modulation parameters benefit more from semantic-awareness rather than spatial-adaptiveness, especially for high-resolution input masks. Inspired by this observation, we propose class-adaptive normalization (CLADE), a lightweight but equally-effective variant that is only adaptive to semantic class. In order to further improve spatial-adaptiveness, we introduce intra-class positional map encoding calculated from semantic layouts to modulate the normalization parameters of CLADE and propose a truly spatially-adaptive variant of CLADE, namely CLADE-ICPE.Through extensive experiments on multiple challenging datasets, we demonstrate that the proposed CLADE can be generalized to different SPADE-based methods while achieving comparable generation quality compared to SPADE, but it is much more efficient with fewer extra parameters and lower computational cost. The code and pretrained models are available at url{https://github.com/tzt101/CLADE.git}.
Image virtual try-on aims to fit a garment image (target clothes) to a person image. Prior methods are heavily based on human parsing. However, slightly-wrong segmentation results would lead to unrealistic try-on images with large artifacts. Inaccurate parsing misleads parser-based methods to produce visually unrealistic results where artifacts usually occur. A recent pioneering work employed knowledge distillation to reduce the dependency of human parsing, where the try-on images produced by a parser-based method are used as supervisions to train a student network without relying on segmentation, making the student mimic the try-on ability of the parser-based model. However, the image quality of the student is bounded by the parser-based model. To address this problem, we propose a novel approach, teacher-tutor-student knowledge distillation, which is able to produce highly photo-realistic images without human parsing, possessing several appealing advantages compared to prior arts. (1) Unlike existing work, our approach treats the fake images produced by the parser-based method as tutor knowledge, where the artifacts can be corrected by real teacher knowledge, which is extracted from the real person images in a self-supervised way. (2) Other than using real images as supervisions, we formulate knowledge distillation in the try-on problem as distilling the appearance flows between the person image and the garment image, enabling us to find accurate dense correspondences between them to produce high-quality results. (3) Extensive evaluations show large superiority of our method (see Fig. 1).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا