No Arabic abstract
The optimized effective potential (OEP) method presents an unambiguous way to construct the Kohn-Sham potential corresponding to a given diagrammatic approximation for the exchange-correlation functional. The OEP from the random-phase approximation (RPA) has played an important role ever since the conception of the OEP formalism. However, the solution of the OEP equation is computationally fairly expensive and has to be done in a self-consistent way. So far, large scale solid state applications have therefore been performed only using the quasiparticle approximation (QPA), neglecting certain dynamical screening effects. We obtain the exact RPA-OEP for 15 semiconductors and insulators by direct solution of the linearized Sham-Schluter equation. We investigate the accuracy of the QPA on Kohn-Sham band gaps and dielectric constants, and comment on the issue of self-consistency.
We present a comparative study of particle-hole and particle-particle channels of random-phase approximation (RPA) for molecular dissociations of different bonding types. We introduced a textit{direct} particle-particle RPA scheme, in analogy to the textit{direct} particle-hole RPA formalism, whereby the exchange-type contributions are excluded. This allows us to compare the behavior of the particle-hole and particle-particle RPA channels on the same footing. Our study unravels the critical role of exchange contributions in determining behaviors of the two RPA channels for describing stretched molecules. We also made an attempt to merge particle-hole RPA and particle-particle RPA into a unified scheme, with the double-counting terms removed. However, benchmark calculations indicate that a straightforward combination of the two RPA channels does not lead to a successful computational scheme for describing molecular dissociations.
The Quasiparticle Random Phase Approximation (QRPA) is used in evaluation of the total muon capture ratesfor the final nuclei participating in double-beta decay. Several variants of the method are used, depending on the size of the single particle model space used, or treatment of the initial bound muon wave function. The resulting capture rates are all reasonably close to each other. In particular, the variant that appears to be most realistic, results in rates in good agreement with the experimental values. There is no necessity for an empirical quenching of the axial current coupling constant $g_A$. Its standard value $g_A$ = 1.27 seems to be adequate.
We have developed a fully consistent framework for calculations in the Quasiparticle Random Phase Approximation (QRPA) with $NN$ interactions from the Similarity Renormalization Group (SRG) and other unitary transformations of realistic interactions. The consistency of our calculations, which use the same Hamiltonian to determine the Hartree-Fock-Bogoliubov (HFB) ground states and the residual interaction for QRPA, guarantees an excellent decoupling of spurious strength, without the need for empirical corrections. While work is under way to include SRG-evolved 3N interactions, we presently account for some 3N effects by means of a linearly density-dependent interaction, whose strength is adjusted to reproduce the charge radii of closed-shell nuclei across the whole nuclear chart. As a first application, we perform a survey of the monopole, dipole, and quadrupole response of the calcium isotopic chain and of the underlying single-particle spectra, focusing on how their properties depend on the SRG parameter $lambda$. Unrealistic spin-orbit splittings suggest that spin-orbit terms from the 3N interaction are called for. Nevertheless, our general findings are comparable to results from phenomenological QRPA calculations using Skyrme or Gogny energy density functionals. Potentially interesting phenomena related to low-lying strength warrant more systematic investigations in the future.
The ground state of a many body Hamiltonian considered in the quasiparticle representation is redefined by accounting for the quasiparticle quadrupole pairing interaction. The residual interaction of the newly defined quasiparticles is treated by the QRPA. Solutions of the resulting equations exhibit specific features. In particular, there is no interaction strength where the first root is vanishing. A comparison with other renormalization methods is presented.
The engineering of the optical response of materials is a paradigm that demands microscopic-level accuracy and reliable predictive theoretical tools. Here we compare and contrast the dispersive permittivity tensor, using both a low-energy effective model and density functional theory (DFT). As a representative material, phosphorene subject to strain is considered. Employing a low-energy model Hamiltonian with a Greens function current-current correlation function, we compute the dynamical optical conductivity and its associated permittivity tensor. For the DFT approach, first-principles calculations make use of the first-order random-phase approximation. Our results reveal that although the two models are generally in agreement within the low-strain and low-frequency regime, the intricate features associated with the fundamental physical properties of the system and optoelectronic device implementation such as band gap, Drude absorption response, vanishing real part, absorptivity, and sign of permittivity over the frequency range show significant discrepancies. Our results suggest that the random-phase approximation employed in widely used DFT packages should be revisited and improved to be able to predict these fundamental electronic characteristics of a given material with confidence. Furthermore, employing the permittivity results from both models, we uncover the pivotal role that phosphorene can play in optoelectronics devices to facilitate highly programable perfect absorption of electromagnetic waves by manipulating the chemical potential and exerting strain and illustrate how reliable predictions for the dielectric response of a given material are crucial to precise device design.