Do you want to publish a course? Click here

Nucleon-nucleon potential from skyrmion dipole interactions

95   0   0.0 ( 0 )
 Added by Derek Harland
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We derive the nucleon-nucleon interaction from the Skyrme model using second order perturbation theory and the dipole approximation to skyrmion dynamics. Unlike previous derivations, our derivation accounts for the non-trivial kinetic and potential parts of the skyrmion-skyrmion interaction lagrangian and how they couple in the quantum calculation. We derive the eight low energy interaction potentials and compare them with the phenomenological Paris model, finding qualitative agreement in seven cases.



rate research

Read More

149 - S. Bacca , N. Barnea , G. Hagen 2014
We combine the coupled-cluster method and the Lorentz integral transform for the computation of inelastic reactions into the continuum. We show that the bound-state-like equation characterizing the Lorentz integral transform method can be reformulated based on extensions of the coupled-cluster equation-of-motion method, and we discuss strategies for viable numerical solutions. Starting from a chiral nucleon-nucleon interaction at next-to-next-to-next-to-leading order, we compute the giant dipole resonances of 4He, 16,22O and 40Ca, truncating the coupled-cluster equation-of-motion method at the two-particle-two-hole excitation level. Within this scheme, we find a low-lying E1 strength in the neutron-rich 22O nucleus, which compares fairly well with data from [Leistenschneider et al. Phys. Rev. Lett. 86, 5442 (2001)]. We also compute the electric dipole polariziability in 40Ca. Deficiencies of the employed Hamiltonian lead to overbinding, too small charge radii and a too small electric dipole polarizability in 40Ca.
We compute the binding energies, radii, and densities for selected medium-mass nuclei within coupled-cluster theory and employ the bare chiral nucleon-nucleon interaction at order N3LO. We find rather well-converged results in model spaces consisting of 15 oscillator shells, and the doubly magic nuclei 40Ca, 48Ca, and the exotic 48Ni are underbound by about 1 MeV per nucleon within the CCSD approximation. The binding-energy difference between the mirror nuclei 48Ca and 48Ni is close to theoretical mass table evaluations. Our computation of the one-body density matrices and the corresponding natural orbitals and occupation numbers provides a first step to a microscopic foundation of the nuclear shell model.
91 - M. R. Robilotta 2006
In the rest frame of a many-body system, used in the calculation of its static and scattering properties, the center of mass of a two-body subsystem is allowed to drift. We show, in a model independent way, that drift corrections to the nucleon-nucleon potential are relatively large and arise from both one- and two-pion exchange processes. As far as chiral symmetry is concerned, corrections to these processes begin respectively at $cO(q^2)$ and $cO(q^4)$. The two-pion exchange interaction also yields a new spin structure, that promotes the presence of $P$ waves in trinuclei and is associated with profile functions which do not coincide with neither central nor spin-orbit ones. In principle, the new spin terms should be smaller than the $cO(q^3)$ spin-orbit components. However, in the isospin even channel, a large contribution reverts this expectation and gives rise to the prediction of important drift effects.
Background: Elastic scattering is probably the main event in the interactions of nucleons with nuclei. Even if this process has been extensively studied in the last years, a consistent description, i.e. starting from microscopic two- and many-body forces connected by the same symmetries and principles, is still under development. Purpose: In this work we study the domain of applicability of microscopic two-body chiral potentials in the construction of an optical potential. Methods: We basically follow the KMT approach to build a microscopic complex optical potential and then we perform some test calculations on 16O at different energies. Results: Our conclusion is that a particular set of potentials with a Lippmann-Schwinger cutoff at relatively high energies (above 500 MeV) has the best performances reproducing the scattering observables. Conclusions: Our work shows that building an optical potential within Chiral Perturbation Theory is a promising approach to the description of elastic proton scattering, in particular, in view of the future inclusion of many-body forces that naturally arise in such framework.
The scalar-isoscalar mode of QCD becomes lighter/nearly massless close to the chiral transition/second-order critical point. From nuclear physics we know that this mode is the main responsible for the attractive part of the nucleon-nucleon potential at inter-particle distances of 1-2 fm. Therefore one expects that close to the critical point there is a long-range strong attraction among nucleons. Using a Walecka-Serot model for the NN potential we study the effects of the critical point in a finite system of nucleons and mesons by solving classical Molecular Dynamics+Langevin equations for the freeze-out conditions of heavy-ion collisions. Going beyond the mean-field approximation allows us to account for strong nucleon correlations in the time evolution, leading to baryon clustering. We observe that light cluster formation, together with an enhancement of higher-order cumulants of the proton distribution can signal the presence of the critical point.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا