Do you want to publish a course? Click here

Quantifying the predictability of visual scanpaths using active information storage

98   0   0.0 ( 0 )
 Added by Patricia Wollstadt
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Entropy-based measures are an important tool for studying human gaze behavior under various conditions. In particular, gaze transition entropy (GTE) is a popular method to quantify the predictability of fixation transitions. However, GTE does not account for temporal dependencies beyond two consecutive fixations and may thus underestimate a scanpaths actual predictability. Instead, we propose to quantify scanpath predictability by estimating the active information storage (AIS), which can account for dependencies spanning multiple fixations. AIS is calculated as the mutual information between a processes multivariate past state and its next value. It is thus able to measure how much information a sequence of past fixations provides about the next fixation, hence covering a longer temporal horizon. Applying the proposed approach, we were able to distinguish between induced observer states based on estimated AIS, providing first evidence that AIS may be used in the inference of user states to improve human-machine interaction.



rate research

Read More

160 - Michael Mandler 2016
An agent who lacks preferences and instead makes decisions using criteria that are costly to create should select efficient sets of criteria, where the cost of making a given number of choice distinctions is minimized. Under mild conditions, efficiency requires that binary criteria with only two categories per criterion are chosen. When applied to the problem of determining the optimal number of digits in an information storage device, this result implies that binary digits (bits) are the efficient solution, even when the marginal cost of using additional digits declines rapidly to 0. This short paper pays particular attention to the symmetry conditions entailed when sets of criteria are efficient.
One of the most fundamental questions one can ask about a pair of random variables X and Y is the value of their mutual information. Unfortunately, this task is often stymied by the extremely large dimension of the variables. We might hope to replace each variable by a lower-dimensional representation that preserves the relationship with the other variable. The theoretically ideal implementation is the use of minimal sufficient statistics, where it is well-known that either X or Y can be replaced by their minimal sufficient statistic about the other while preserving the mutual information. While intuitively reasonable, it is not obvious or straightforward that both variables can be replaced simultaneously. We demonstrate that this is in fact possible: the information Xs minimal sufficient statistic preserves about Y is exactly the information that Ys minimal sufficient statistic preserves about X. As an important corollary, we consider the case where one variable is a stochastic process past and the other its future and the present is viewed as a memoryful channel. In this case, the mutual information is the channel transmission rate between the channels effective states. That is, the past-future mutual information (the excess entropy) is the amount of information about the future that can be predicted using the past. Translating our result about minimal sufficient statistics, this is equivalent to the mutual information between the forward- and reverse-time causal states of computational mechanics. We close by discussing multivariate extensions to this use of minimal sufficient statistics.
Applications from finance to epidemiology and cyber-security require accurate forecasts of dynamic phenomena, which are often only partially observed. We demonstrate that a systems predictability degrades as a function of temporal sampling, regardless of the adopted forecasting model. We quantify the loss of predictability due to sampling, and show that it cannot be recovered by using external signals. We validate the generality of our theoretical findings in real-world partially observed systems representing infectious disease outbreaks, online discussions, and software development projects. On a variety of prediction tasks---forecasting new infections, the popularity of topics in online discussions, or interest in cryptocurrency projects---predictability irrecoverably decays as a function of sampling, unveiling fundamental predictability limits in partially observed systems.
Determining how much of the sensory information carried by a neural code contributes to behavioral performance is key to understand sensory function and neural information flow. However, there are as yet no analytical tools to compute this information that lies at the intersection between sensory coding and behavioral readout. Here we develop a novel measure, termed the information-theoretic intersection information $I_{II}(S;R;C)$, that quantifies how much of the sensory information carried by a neural response R is used for behavior during perceptual discrimination tasks. Building on the Partial Information Decomposition framework, we define $I_{II}(S;R;C)$ as the part of the mutual information between the stimulus S and the response R that also informs the consequent behavioral choice C. We compute $I_{II}(S;R;C)$ in the analysis of two experimental cortical datasets, to show how this measure can be used to compare quantitatively the contributions of spike timing and spike rates to task performance, and to identify brain areas or neural populations that specifically transform sensory information into choice.
Many real-world problems can be formalized as predicting links in a partially observed network. Examples include Facebook friendship suggestions, consumer-product recommendations, and the identification of hidden interactions between actors in a crime network. Several link prediction algorithms, notably those recently introduced using network embedding, are capable of doing this by just relying on the observed part of the network. Often, the link status of a node pair can be queried, which can be used as additional information by the link prediction algorithm. Unfortunately, such queries can be expensive or time-consuming, mandating the careful consideration of which node pairs to query. In this paper we estimate the improvement in link prediction accuracy after querying any particular node pair, to use in an active learning setup. Specifically, we propose ALPINE (Active Link Prediction usIng Network Embedding), the first method to achieve this for link prediction based on network embedding. To this end, we generalized the notion of V-optimality from experimental design to this setting, as well as more basic active learning heuristics originally developed in standard classification settings. Empirical results on real data show that ALPINE is scalable, and boosts link prediction accuracy with far fewer queries.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا