Do you want to publish a course? Click here

Predictability limit of partially observed systems

97   0   0.0 ( 0 )
 Added by Andres Abeliuk
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Applications from finance to epidemiology and cyber-security require accurate forecasts of dynamic phenomena, which are often only partially observed. We demonstrate that a systems predictability degrades as a function of temporal sampling, regardless of the adopted forecasting model. We quantify the loss of predictability due to sampling, and show that it cannot be recovered by using external signals. We validate the generality of our theoretical findings in real-world partially observed systems representing infectious disease outbreaks, online discussions, and software development projects. On a variety of prediction tasks---forecasting new infections, the popularity of topics in online discussions, or interest in cryptocurrency projects---predictability irrecoverably decays as a function of sampling, unveiling fundamental predictability limits in partially observed systems.



rate research

Read More

Entropy-based measures are an important tool for studying human gaze behavior under various conditions. In particular, gaze transition entropy (GTE) is a popular method to quantify the predictability of fixation transitions. However, GTE does not account for temporal dependencies beyond two consecutive fixations and may thus underestimate a scanpaths actual predictability. Instead, we propose to quantify scanpath predictability by estimating the active information storage (AIS), which can account for dependencies spanning multiple fixations. AIS is calculated as the mutual information between a processes multivariate past state and its next value. It is thus able to measure how much information a sequence of past fixations provides about the next fixation, hence covering a longer temporal horizon. Applying the proposed approach, we were able to distinguish between induced observer states based on estimated AIS, providing first evidence that AIS may be used in the inference of user states to improve human-machine interaction.
One of the most fundamental questions one can ask about a pair of random variables X and Y is the value of their mutual information. Unfortunately, this task is often stymied by the extremely large dimension of the variables. We might hope to replace each variable by a lower-dimensional representation that preserves the relationship with the other variable. The theoretically ideal implementation is the use of minimal sufficient statistics, where it is well-known that either X or Y can be replaced by their minimal sufficient statistic about the other while preserving the mutual information. While intuitively reasonable, it is not obvious or straightforward that both variables can be replaced simultaneously. We demonstrate that this is in fact possible: the information Xs minimal sufficient statistic preserves about Y is exactly the information that Ys minimal sufficient statistic preserves about X. As an important corollary, we consider the case where one variable is a stochastic process past and the other its future and the present is viewed as a memoryful channel. In this case, the mutual information is the channel transmission rate between the channels effective states. That is, the past-future mutual information (the excess entropy) is the amount of information about the future that can be predicted using the past. Translating our result about minimal sufficient statistics, this is equivalent to the mutual information between the forward- and reverse-time causal states of computational mechanics. We close by discussing multivariate extensions to this use of minimal sufficient statistics.
In this paper, we consider the problem of controlling a partially observed Markov decision process (POMDP) in order to actively estimate its state trajectory over a fixed horizon with minimal uncertainty. We pose a novel active smoothing problem in which the objective is to directly minimise the smoother entropy, that is, the conditional entropy of the (joint) state trajectory distribution of concern in fixed-interval Bayesian smoothing. Our formulation contrasts with prior active approaches that minimise the sum of conditional entropies of the (marginal) state estimates provided by Bayesian filters. By establishing a novel form of the smoother entropy in terms of the POMDP belief (or information) state, we show that our active smoothing problem can be reformulated as a (fully observed) Markov decision process with a value function that is concave in the belief state. The concavity of the value function is of particular importance since it enables the approximate solution of our active smoothing problem using piecewise-linear function approximations in conjunction with standard POMDP solvers. We illustrate the approximate solution of our active smoothing problem in simulation and compare its performance to alternative approaches based on minimising marginal state estimate uncertainties.
Predictive models for human mobility have important applications in many fields such as traffic control, ubiquitous computing and contextual advertisement. The predictive performance of models in literature varies quite broadly, from as high as 93% to as low as under 40%. In this work we investigate which factors influence the accuracy of next-place prediction, using a high-precision location dataset of more than 400 users for periods between 3 months and one year. We show that it is easier to achieve high accuracy when predicting the time-bin location than when predicting the next place. Moreover we demonstrate how the temporal and spatial resolution of the data can have strong influence on the accuracy of prediction. Finally we uncover that the exploration of new locations is an important factor in human mobility, and we measure that on average 20-25% of transitions are to new places, and approx. 70% of locations are visited only once. We discuss how these mechanisms are important factors limiting our ability to predict human mobility.
System identification is a key step for model-based control, estimator design, and output prediction. This work considers the offline identification of partially observed nonlinear systems. We empirically show that the certainty-equivalent approximation to expectation-maximization can be a reliable and scalable approach for high-dimensional deterministic systems, which are common in robotics. We formulate certainty-equivalent expectation-maximization as block coordinate-ascent, and provide an efficient implementation. The algorithm is tested on a simulated system of coupled Lorenz attractors, demonstrating its ability to identify high-dimensional systems that can be intractable for particle-based approaches. Our approach is also used to identify the dynamics of an aerobatic helicopter. By augmenting the state with unobserved fluid states, a model is learned that predicts the acceleration of the helicopter better than state-of-the-art approaches. The codebase for this work is available at https://github.com/sisl/CEEM.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا