Do you want to publish a course? Click here

Amazon SageMaker Automatic Model Tuning: Scalable Gradient-Free Optimization

334   0   0.0 ( 0 )
 Added by Valerio Perrone
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Tuning complex machine learning systems is challenging. Machine learning typically requires to set hyperparameters, be it regularization, architecture, or optimization parameters, whose tuning is critical to achieve good predictive performance. To democratize access to machine learning systems, it is essential to automate the tuning. This paper presents Amazon SageMaker Automatic Model Tuning (AMT), a fully managed system for gradient-free optimization at scale. AMT finds the best version of a trained machine learning model by repeatedly evaluating it with different hyperparameter configurations. It leverages either random search or Bayesian optimization to choose the hyperparameter values resulting in the best model, as measured by the metric chosen by the user. AMT can be used with built-in algorithms, custom algorithms, and Amazon SageMaker pre-built containers for machine learning frameworks. We discuss the core functionality, system architecture, our design principles, and lessons learned. We also describe more advanced features of AMT, such as automated early stopping and warm-starting, showing in experiments their benefits to users.



rate research

Read More

AutoML systems provide a black-box solution to machine learning problems by selecting the right way of processing features, choosing an algorithm and tuning the hyperparameters of the entire pipeline. Although these systems perform well on many datasets, there is still a non-negligible number of datasets for which the one-shot solution produced by each particular system would provide sub-par performance. In this paper, we present Amazon SageMaker Autopilot: a fully managed system providing an automated ML solution that can be modified when needed. Given a tabular dataset and the target column name, Autopilot identifies the problem type, analyzes the data and produces a diverse set of complete ML pipelines including feature preprocessing and ML algorithms, which are tuned to generate a leaderboard of candidate models. In the scenario where the performance is not satisfactory, a data scientist is able to view and edit the proposed ML pipelines in order to infuse their expertise and business knowledge without having to revert to a fully manual solution. This paper describes the different components of Autopilot, emphasizing the infrastructure choices that allow scalability, high quality models, editable ML pipelines, consumption of artifacts of offline meta-learning, and a convenient integration with the entire SageMaker suite allowing these trained models to be used in a production setting.
Understanding the predictions made by machine learning (ML) models and their potential biases remains a challenging and labor-intensive task that depends on the application, the dataset, and the specific model. We present Amazon SageMaker Clarify, an explainability feature for Amazon SageMaker that launched in December 2020, providing insights into data and ML models by identifying biases and explaining predictions. It is deeply integrated into Amazon SageMaker, a fully managed service that enables data scientists and developers to build, train, and deploy ML models at any scale. Clarify supports bias detection and feature importance computation across the ML lifecycle, during data preparation, model evaluation, and post-deployment monitoring. We outline the desiderata derived from customer input, the modular architecture, and the methodology for bias and explanation computations. Further, we describe the technical challenges encountered and the tradeoffs we had to make. For illustration, we discuss two customer use cases. We present our deployment results including qualitative customer feedback and a quantitative evaluation. Finally, we summarize lessons learned, and discuss best practices for the successful adoption of fairness and explanation tools in practice.
Deep neural networks are vulnerable to adversarial examples, even in the black-box setting, where the attacker is restricted solely to query access. Existing black-box approaches to generating adversarial examples typically require a significant number of queries, either for training a substitute network or performing gradient estimation. We introduce GenAttack, a gradient-free optimization technique that uses genetic algorithms for synthesizing adversarial examples in the black-box setting. Our experiments on different datasets (MNIST, CIFAR-10, and ImageNet) show that GenAttack can successfully generate visually imperceptible adversarial examples against state-of-the-art image recognition models with orders of magnitude fewer queries than previous approaches. Against MNIST and CIFAR-10 models, GenAttack required roughly 2,126 and 2,568 times fewer queries respectively, than ZOO, the prior state-of-the-art black-box attack. In order to scale up the attack to large-scale high-dimensional ImageNet models, we perform a series of optimizations that further improve the query efficiency of our attack leading to 237 times fewer queries against the Inception-v3 model than ZOO. Furthermore, we show that GenAttack can successfully attack some state-of-the-art ImageNet defenses, including ensemble adversarial training and non-differentiable or randomized input transformations. Our results suggest that evolutionary algorithms open up a promising area of research into effective black-box attacks.
Hyperparameter selection generally relies on running multiple full training trials, with selection based on validation set performance. We propose a gradient-based approach for locally adjusting hyperparameters during training of the model. Hyperparameters are adjusted so as to make the model parameter gradients, and hence updates, more advantageous for the validation cost. We explore the approach for tuning regularization hyperparameters and find that in experiments on MNIST, SVHN and CIFAR-10, the resulting regularization levels are within the optimal regions. The additional computational cost depends on how frequently the hyperparameters are trained, but the tested scheme adds only 30% computational overhead regardless of the model size. Since the method is significantly less computationally demanding compared to similar gradient-based approaches to hyperparameter optimization, and consistently finds good hyperparameter values, it can be a useful tool for training neural network models.
Effective techniques for eliciting user preferences have taken on added importance as recommender systems (RSs) become increasingly interactive and conversational. A common and conceptually appealing Bayesian criterion for selecting queries is expected value of information (EVOI). Unfortunately, it is computationally prohibitive to construct queries with maximum EVOI in RSs with large item spaces. We tackle this issue by introducing a continuous formulation of EVOI as a differentiable network that can be optimized using gradient methods available in modern machine learning (ML) computational frameworks (e.g., TensorFlow, PyTorch). We exploit this to develop a novel, scalable Monte Carlo method for EVOI optimization, which is more scalable for large item spaces than methods requiring explicit enumeration of items. While we emphasize the use of this approach for pairwise (or k-wise) comparisons of items, we also demonstrate how our method can be adapted to queries involving subsets of item attributes or partial items, which are often more cognitively manageable for users. Experiments show that our gradient-based EVOI technique achieves state-of-the-art performance across several domains while scaling to large item spaces.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا